Exercise CI-151

Choosing a training program

The Economic Skills Project

1 Problem

Problem

An individual expects to have \$50,000 of income in period 0 and \$60,0000 in period 1. She is considering the training programs in the table below. Each program would have a tuition cost but would also raise her future income. Using r = 20%, which program, if any, would she choose? What is her new net present value of income?

2 Answer

Answer

Here's the solution:

• She would choose C and it would raise her net PVI to \$102,000.

Program	Tuition in 0	Raise in 1
А	\$14,000	\$18,000
В	\$20,000	\$24,000
С	\$10,000	\$14,400

Program	Tuition in 0	Raise in 1	I ₀ ^{net}	I ₁ ^{net}
None	\$0	\$0	\$50,000	\$60,000
A	\$14,000	\$18,000	\$36,000	\$78,000
В	\$20,000	\$24,000	\$30,000	\$84,000
С	\$10,000	\$14,400	\$40,000	\$74,400

3 Method

Solution method

Here's one approach:

- 1. Calculate her net income in each period under each option.
- 2. Calculate the present value of her net income under each.
- 3. Choose the option with the highest net PVI.
- 4. Check using net present value.

4 Solution

4.1 Step 1

Calculate her net income under each option

If T is tuition and R is the raise, her net incomes in each period are $I_0^{net} = I_0 - T$ and $I_1^{net} = I_1 + R$. The results are shown below. For reference, "None" shows her situation if she chooses not to take any of the programs.

4.2 Step 2

Calculate her net PVI under each

Each program's net PVI will be:

$$PVI = I_0^{net} + \frac{I_1^{net}}{1+r}$$

Computing it:

Program	PVI
None	$$50,000 + \frac{$60,000}{1.2} = $100,000$
А	$36,000 + \frac{578,000}{1.2} = 101,000$
В	$30,000 + \frac{84,000}{1.2} = 100,000$
С	$$40,000 + \frac{$74,400}{1.2} = $102,000$

Program	NPV	
None	$\frac{\$0}{1.2} - \$0 = \$0$	
A	$\frac{\$18,000}{1.2} - \$14,000 = \$1,000$	
В	$\frac{\$24,000}{1.2} - \$20,000 = \$0$	
С	$\frac{\$14,400}{1.2} - \$10,000 = \$2,000$	

4.3 Step 3

Choose the option with the highest net PVI

Option C has the highest net PVI so it's the best choice. Her new PVI is \$102,000, which is a gain of \$2,000 relative to not taking any of the programs.

4.4 Step 4

Check using net present value

Another way to solve the problem is to compute the net present value of each program:

$$\mathsf{NPV} = \frac{\mathsf{R}}{1+\mathsf{r}} - \mathsf{T}$$

Computing it:

The decision is the same: C is best and it produces a gain of \$2,000.

Everything checks - done!

Revised 2019-03-30