Exercise CW-252

Income and substitution effects for Stone-Geary preferences

The Economic Skills Project

1 Problem

Problem

A household has the Stone-Geary utility function, demand curves, and expenditure function shown below:

$$U = (X - 200)^{0.5} (Y + 100)^{0.5}$$
$$M = 2U \cdot (P_X)^{0.5} (P_Y)^{0.5} + 200P_X - 100P_Y$$
$$X = 200 + \frac{0.5 (M - 200P_X + 100P_Y)}{P_X}$$
$$Y = -100 + \frac{0.5 (M - 200P_X + 100P_Y)}{P_Y}$$

Problem, continued

Initially, $P_X = 20 , $P_Y = 10 , and M = \$20,000. The government is considering a policy that would raise the price P_X to \$25. There would be no change in M or P_Y . What are the income and substitution effects of the policy?

2 Answer

Answer

Here's the solution:

- Substitution effect: -45 units of X
- Income effect: -60 units of X

3 Method

Solution method

Here's one approach:

- 1. Use the demand equations to compute X_1 and Y_1 .
- 2. Use the utility function to compute U_1 .
- 3. Use the demand equation to compute X_2 .
- 4. Use the expenditure function to compute M_3 .
- 5. Use M_3 to compute X_3 .
- 6. Compare X_3 to X_1 and X_2 to compute the effects.
- 7. Check the result.

4 Solution

4.1 Step 1

Use the demand equations to compute X₁ and Y₁

Inserting the initial values of M_1 , P_{X1} , and P_{Y1} into the demands gives:

$$X_{1} = 200 + \frac{0.5 (\$20k - 200 \cdot \$20 + 100 \cdot \$10)}{\$20} = 625$$
$$Y_{1} = -100 + \frac{0.5 (\$20k - 200 \cdot \$20 + 100 \cdot \$10)}{\$20} = 750$$

4.2 Step 2

Use the utility function to compute U₁

Using X_1 and Y_1 to compute U_1 :

$$\mathbf{U} = (625 - 200)^{0.5} (850 + 100)^{0.5} = 601.04$$

4.3 Step 3

Use the demand equation to compute X₂

Inserting the new values of M_2 (unchanged), P_{X2} , and P_{Y2} (unchanged) into the demands gives:

$$X_2 = 200 + \frac{0.5(\$20k - 200 \cdot \$25 + 100 \cdot \$10)}{\$25} = 520$$

4.4 Step 4

Use the expenditure function to compute M₃

Inserting U_1 and P_{X2} and P_{Y2} into the expenditure function gives M_3 , the expenditure needed to get the original utility at the new prices:

$$M_{3} = 2U_{1} \cdot (P_{X2})^{0.5} (P_{Y2})^{0.5} + 200P_{X2} - 100P_{Y2}$$
$$M_{3} = 2 (601.04) \cdot (\$25)^{0.5} (\$10)^{0.5} + 200 \cdot \$25 - 100 \cdot \$10$$
$$M_{3} = \$23,007$$

4.5 Step 5

Use M_3 to compute X_3

Inserting M_3 and P_{X2} into the demand equation gives X_3 , the amount the household would consume if it had been compensated and remained on the original indifference curve:

$$X_3 = 200 + \frac{0.5(\$23,007 - 200 \cdot \$25 + 100 \cdot \$10)}{\$25} = 580$$

4.6 Step 6

Compare X₃ to X₁ and X₂ to compute the effects

The substitution and income effects, ΔX_S and ΔX_I , are defined as follows:

$$\Delta X_{\rm S} = X_3 - X_1$$
$$\Delta X_{\rm I} = X_2 - X_3$$

Inserting the values of X₁, X₂, and X₃:

$$\Delta X_{\rm S} = 580 - 625 = -45$$
$$\Delta X_{\rm I} = 520 - 580 = -60$$

4.7 Step 7

Check the result

The sum of the income and substitution effects, $\Delta X_S + \Delta X_I$, should be equal to the actual change in X. The actual change is:

$$X_2 - X_1 = 520 - 625 = -105$$

The sum of the income and substitution effects is:

$$\Delta X_{\rm S} + \Delta X_{\rm I} = -45 - 60 = -105$$

Everything checks - done!