Exercise MD-201

Computing an elasticity from a demand equation

The Economic Skills Project

1 Problem

Problem

Given the information below, compute Q_1 and Q_2 and then solve for the demand elasticity η between the two points.

Demand Q = 100 - 2P**Initial price** $P_1 = 10$ **Final price** $P_2 = 30$

2 Answer

Answer

Here's the numerical solution:

- $Q_1 = 80$
- $Q_2 = 40$
- $\eta = -0.25$

3 Method

Solution method

Here's one approach:

- 1. Draw the graph
- 2. Compute Q_1 and Q_2
- 3. Compute the percentage change in P and Q from point 1 to point 2
- 4. Compute the elasticity

4 Solution

4.1 Draw the graph

Draw the graph

Here's how it looks:

4.2 Compute quantities

Compute quantities

Find Q₁:

- $Q_1 = 100 2P_1$
- $Q_1 = 100 2(10) = 80$

Find Q₂ :

- $Q_2 = 100 2P_2$
- $Q_2 = 100 2(30) = 40$

4.3 Compute percent changes

Compute percent changes

Find % ΔP :

- $\%\Delta P = \frac{P_2 P_1}{P_1} = \frac{30 10}{10}$
- $\%\Delta P = \frac{20}{10} = 2 \text{ or } 200\%$

Find % ΔQ :

•
$$\%\Delta Q = \frac{Q_2 - Q_1}{Q_1} = \frac{40 - 80}{80}$$

• $\%\Delta Q = -\frac{40}{80} = -0.5 \text{ or } -50\%$

4.4 Compute the elasticity

Compute the elasticity

Definition of η :

•
$$\eta = \frac{\%\Delta Q}{\%\Delta P}$$

Inserting values of ΔP and ΔQ :

•
$$\eta = -\frac{0.5}{2} = -0.25$$

Alternatively, in percentages:

•
$$\eta = -\frac{50\%}{200\%} = -0.25$$

Done!

Revised 2019-03-30