Exercise MD-255

Computing a change in consumer surplus

The Economic Skills Project

1 Problem

Problem

Given the willingness to pay curve and prices below, compute the change in consumer surplus, ΔCS , when the price rises from P₁ to P₂.

- WTP = $200 \frac{1}{2}Q$
- $P_1 = \$80$
- $P_2 = \$100$

2 Answer

Answer

Here's the numerical solution:

• $\Delta CS = -\$4,400$

3 Method

Solution method

Here's one approach:

- 1. Draw the graph with variables for P_1 , P_2 , Q_1 and Q_2 .
- 2. Compute Q_1 and Q_2 .
- 3. Draw the graph with numerical P_1 , P_2 , Q_1 and Q_2 .
- 4. Compute the area of the trapezoid between P_1 and P_2 .

4 Solution

4.1 Step 1

Draw the graph with variables for $\mathsf{P}_1,\,\mathsf{P}_2,\,\mathsf{Q}_1$ and Q_2

Here's how it looks:

4.2 Step 2

 $\textbf{Compute} \ Q_1 \ \textbf{and} \ Q_2$

Find Q₁:

- $P_1 = WTP = 200 \frac{1}{2}Q_1$
- $\frac{1}{2}Q_1 = 200 P_1$
- $Q_1 = 2(200 80) = 240$

Find Q_2 :

- $P_2 = WTP = 200 \frac{1}{2}Q_2$
- $\frac{1}{2}Q_2 = 200 P_2$
- $Q_2 = 2(200 100) = 200$

4.3 Step 3

Draw the graph with numerical P_1 , P_2 , Q_1 and Q_2

The change in consumer surplus, ΔCS , will be a loss equal to the shaded area below. It's a loss because P₂ is higher than P₁ so the consumer is worse off.

4.4 Step 4

Compute the area of the trapezoid between P_1 and P_2

Computing it using the formula for the area of a trapezoid with bases b_1 and b_2 and height h:

•
$$\Delta CS = -\frac{(b_1+b_2)}{2} \cdot h = -\frac{(240+200)}{2} \cdot 20 = -\$4,400$$

Alternatively, ΔCS can be computed by summing the area of the rectangle and the triangle:

• $\Delta CS = \$20 \cdot 200 + \frac{1}{2} \cdot \$20 \cdot 40 = \$4,400$

Everything checks - done!