Exercise MX-201

Removing a cross subsidy that is creating a deficit

The Economic Skills Project

1 Problem

Problem

A government agency serves two markets, U and R, and is subject to a cross subsidy policy that requires it to charge the same \$100 price in both markets. It has a WTA_U = \$80 but its WTA_R > \$100. It is currently selling Q_U = 10,000 and Q_R = 4,000 and running a \$100,000 deficit on the policy. The demand elasticities in the two markets are $\eta_U = -1$ and $\eta_R = -0.5$.

Determine the value of WTA_R. Then calculate what would happen to Q_U and Q_R if the cross subsidy were removed. What would the Δ CS be in each market? What would the overall Δ SS be?

2 Answer

Answer

Here's the solution:

- $WTA_R = 175
- $Q_u = 12,000$
- $Q_R = 2,500$
- $\Delta CS_u = +$220,000$
- $\Delta CS_R = -$243,750$
- $\Delta SS = +\$76,250$

3 Method

Solution method

Here's one approach:

- 1. Draw diagrams of the two markets.
- 2. Calculate the tax revenue raised in the U market.
- 3. Calculate the subsidy expenditure in the R market.
- 4. Calculate the value of WTA_R .
- 5. Use the elasticities to find the new quantities.
- 6. Calculate ΔCS_U and ΔCS_R .
- 7. Calculate Δ SS.

4 Solution

4.1 Step 1

Draw diagrams of the two markets

Here's how they look:

4.2 Step 2

Calculate the tax revenue raised in the U market

The revenue, shown in blue in the previous graph of the U market, is the effective tax rate, $P_U - WTA_U$, times the number of units traded:

$$Rev_{11} = (\$100 - \$80) * 10,000 = \$200,000$$

4.3 Step 3

Calculate the subsidy expenditure in the R market

The expenditure on the subsidy in R, Exp_R , is equal to Rev_U adjusted by the deficit the agency is incurring on the policy. The accounting equation below links the revenue, subsidy expenditure, and deficit Def:

$$Exp_R - Rev_U = Def$$

Thus:

$$Exp_R = Rev_U + Def$$

So:

$$Exp_R = $200,000 + $100,000 = $300,000$$

4.4 Step 4

Calculate the value of WTA_R

Since Exp_R is \$300k and $Q_R=4000$ units are being subsidized, the subsidy per unit, S, is:

$$S = Exp_R/Q_R = \$300k/4000 = \$75$$

The producer price, P_R^S , is thus:

$$P_R^S = P_R^D + S = \$100 + \$75 = \$175$$

Since supply requires $P_R^S = WTA_R$:

$$WTA_R = $175$$

4.5 Step 5

Use the elasticities to find the new quantities, p. 1

Removing the cross subsidy would change each market's price to the corresponding WTA. For U the new $P_{\rm U}$ and the percentage change from the initial value are:

$$P_{U} = \$80$$
 % $\Delta P_{U} = (\$80 - \$100) / \$100 = -20\%$

Use the demand elasticity, η_U , to calculate the percent change in Q_U :

$$\Delta Q_{U} = \eta_{U} * \Delta P_{U} = -1 * (-20\%) = +20\%$$

The new value of Q_U will be:

$$Q_{U2} = 10,000 + 0.2 * 10,000 = 12,000$$

Use the elasticities to find the new quantities, p. 2

Calculating the new P_R and the corresponding percentage change:

$$P_{R} = WTA_{R} = \$175$$

$$\%\Delta P_{R} = (\$175 - \$100)/\$100 = +75\%$$

Using the demand elasticity, η_R , to calculate the percent change in Q_R :

$$\%\Delta Q_R = \eta_R * \%\Delta P_R = -0.5*(+75\%) = -37.5\%$$

The new Q_R is thus:

$$Q_{R2} = 4000 - 0.375 * 4000 = 2500$$

4.6 Step 6

Calculate the changes in CS, p. 1

A good first step is to draw each diagram. Here's how they look:

Calculate the changes in CS, p. 2

Each Δ CS can be calculated using the formula for the area of a trapezoid:

$$A=(\frac{b_1+b_2}{2})*h$$

For U:

$$\Delta CS_{U} = (\frac{10,000 + 12,000}{2}) * \$20 = +\$220,000$$

For R:

$$\Delta CS_R = -(\frac{4000 + 2500}{2}) * \$75 = -\$243,750$$

4.7 Step 7

Calculate the change in SS, p. 1

The change in social surplus is given by:

$$\Delta SS = \Delta CS_{U} + \Delta CS_{R} + \Delta Rev$$

where ΔRev is the difference between the new and old net revenue (revenue less expenditure on the subsidy). The old net revenue was:

$$Rev_1 = \$200,000 - \$300,000 = -\$100,000$$

The new net revenue is $Rev_2 = \$0$ since there's no tax revenue collected in U nor any subsidy paid in R. Thus:

$$\Delta \text{Rev} = \text{Rev}_2 - \text{Rev}_1 = \$0 - (-\$100,000) = \$100,000$$

That is, the agency has eliminated its deficit.

Calculate the change in SS, p. 2

Finally, the change is social surplus is:

$$\Delta SS = \$220,000 - \$243,750 + \$100,000 = \$76,250$$

Done!

Revised 2022-10-21