Understanding the Scale of the Problem: US Energy Sources and CO2 Emissions

Pete Wilcoxen
Departments of Economics and Public Administration
The Maxwell School, Syracuse University

BUA/ECS 650/EST 696 March 22, 2010

BUA650 - 1

US greenhouse gas emissions in 2005

Gas	mmt	mmt CO2e
Carbon Dioxide	6008	6008
Methane	27	612
Nitrous Oxide	1.2	367
Halocarbons		160

mmt = 1 million metric tons = 10^9 kg; CO2e = CO2 equivalent

Controlling CO2 emissions

- Natural result of combustion
 - Not an impurity like sulfur
 - Not from poor combustion (ozone, NOx, particulates)
- · Reductions require either or both of the following
 - Reduction in fuel use
 - Capture and sequestration of CO2

Fuel use and energy units

- National fuel use is measured in quads
 - 1 quad = 1 quadrillion British Thermal Units (BTU)
 - quadrillion = 10^15
 - 1 quad = 10^15 BTU = about 1 exajoule (10^18 J)

BUA650 - 5

Putting a quad in perspective ...

- Coal delivered by "unit trains"
 - 100 cars, about 1 mile long
- 1 train = 10,000 tons of coal
 - Fuels a 500 MW power plant for about 2.5 days
- 1 quad = 4,500 unit trains
- Powder River Basin in WY:
 - 60 trains a day

Photo: University of Wyoming

How many supertankers?

• 1 tanker = 1 million barrels of oil

- 1 quad = 170 tankers
- US used 21 million barrels per day (57% imported) in 2005

BUA650 - 7

How much energy is used?

- World energy consumption
 - 400 quads per year
 - 1 quad every 22 hours
- US consumption
 - 100 quads per year
 - 25% of the world total

A very large problem ...

- US fossil energy
 - 86 quads
- US emissions
 - 6 billion tons of CO2 or 1.7 billion tons of C
- Limiting temperature increase to 2° C
 - Need to bring CO2 down by more than 80%
 - Obama Administration's goal: 83% reduction by 2050

BUA650 - 11

Four options for abatement

- · Fuel switching
 - Shift to fuels with lower CO2 for given energy
 - Example: coal to gas for electricity
- · Improve efficiency
 - Use fuels more efficiently to produce lighting, heating, etc.
 - Example: better lights
- Reduce energy services
 - Use less lighting, heating, etc.
 - · Example: turn lights off

- Capture and sequester CO2
 - Store in old oil reservoirs or saline aquifers

Abating vehicle emissions

- Shift fuel mix -- less CO2 per unit of energy, less imported oil
 - Toward natural gas
 - Toward biofuels (really feasible?)
 - Toward electricity with sequestration
- Improve fuel efficiency -- less energy per mile
 - Hybrids
 - Advanced diesel
 - Public transportation
- · Reduce driving -- fewer miles
 - Live closer to work
 - Change habits

BUA650 - 17

Electric sector has multiple roles

- Adapting to climate change
 - Higher summer temperatures
 - Potentially greater peak demand for electricity
- · Implementing climate policies
 - Generation and delivery of renewable power
 - Replace on-site fuel use in order to sequester carbon
 - Support plug-in hybrids
- Implications
 - Even greater role for the grid

Key problem for power producers...

- · Need to follow variations in demand
 - Electricity essentially non-storable at the grid level
- Power demand varies strongly over the day
 - Higher during the day than at night
- · Also varies strongly over the year
 - Higher in the summer due to air conditioning

California load curve 31000 • Independent System Operator CAISO Operates part of the electrical grid • Data for March 22, 2010 • Demand (red curve): Min at 3:30 am, 19 GW Max at 9:00 pm, 28 GW Max is 47% higher Hour Beginning • Capacity (green curve): Day Ahead Demand Forecast 28–31 GW -Actual Demand -Available Resources Forecast BUA650 - 21

Types of plants

- Base load
 - Run almost all the time
 - Expensive to build, slow start, cheap to run
 - Coal, nuclear
- Peaking
 - Run during peak periods
 - Cheap to build, quick start, expensive to run
 - Gas, oil, hydro
- Intermittent
 - Weather dependent: wind, solar

Typical base load coal plant

- AES Somerset on Lake Ontario
- 655 MW capacity
- 91% utilization in 2005
- 5.2 million MWh
- 4.5 mmt CO2

Photo: NYS DEC

Summary of generation mix

Fuel	Capacity (GW)	Generation (GWyr)	Fossil Fuel Use (Quads)	Carbon (Mmt C)
Oil	57	7	0.6	13
Gas	374	84	6.4	93
Coal	310	224	20.5	532
Fossil total	741	315	27.5	638
Nuclear	100	90		
Renewables	116	39		
Total	958	444	27.5	638

BUA650 - 25

Leading options for replacing fossil

- Integrated gasification combined cycle coal (IGCC)
 - With carbon capture and sequestration (CCS)
- Combined cycle gas (CC)
 - With CCS
- Nuclear
- Renewables
 - Biomass
 - Hydro
 - Wind
 - Solar thermal, photovoltaic

Advanced coal power plants

Integrated gasification combined cycle (IGCC)

IGCC plant at Puertollano, Spain

http://www.powergeneration.siemens.com/press/press-pictures/igcc/igcc-puertollano1.htm

BUA650 - 27

Cost of building new power plants

Technology	Capital cost per GW of capacity
Coal	\$2.1 B
IGCC	\$2.4 B
IGCC with CCS	\$3.5 B
Nat Gas CC	\$0.9 B
CC with CCS	\$1.9 B

Technology	Capital cost per GW of capacity
Adv Nuclear	\$3.3 B
Biomass	\$3.8 B
Hydro	\$2.2 B
Onshore Wind	\$1.9 B
Solar Thermal	\$5.0 B
Solar/PV	\$6.0 B

Replacing fossil completely?

- Need about 550 GW total
 - Peaking: 220 GW
 - Baseload: 330 GW
- All cases at right assume gas is used for peaking
- Fossil with carbon capture
 - 410 GW of advanced coal
 - 80% utilization
 - Total = \$1.8T
- Nuclear
 - 367 GW advanced nuclear
 - 90% utilization
 - Total = \$1.2 T
- · Intermittent renewables
 - 1300 GW of wind
 - 25% utilization
 - Total = \$2.9 T

BUA650 - 29

Very important implication

- · Would be less expensive if demand were lower
- Need to reduce fuel use on the demand side

Transmission grid

- Can we get power where it's needed?
- Especially important for wind and solar
 - Best locations are far from cities
 - Need geographic dispersion

BUA650 - 31

More grid capacity needed for wind

Variation in wholesale electricity prices due to grid congestion

Figure 2.2-3 Contour Map of Annual Load Weighted LMP

From "2006 Midwest ISO-PJM Coordinated System Plan (CSP)," December 2006.

Reducing demand?

- Very quick overview of energy use
- · Residential and commercial
 - Heating
 - Air conditioning
 - Water heating
 - Appliances
- Industry
 - More difficult due to accounting for feedstocks
 - Mostly in the production process
 - Most of that is heating

Historical perspective?

- Does fuel use rise inexorably no matter what?
- What do we know from history about fuel use?

Energy prices matter!

- Stabilized US energy consumption
 - Flat for about 20 years
- GDP growth was a little slower
 - About 0.2% per year: from 3.2% to 3.0%

Policy option: carbon tax

- Tax fossil fuels based on the carbon emitted when burned
 - Example: \$15 per ton of CO2
- Raises price of natural gas, gasoline and electricity
 - Gasoline
 - 13 cents per gallon
 - Natural gas
 - 82 cents per 1000 cubic feet
 - Electricity
 - 0 to 1.6 cents per kWh
 - In general, about a 6% increase

What political problems arise?

- · Large energy taxes may not be politically viable
 - Not possible to discuss seriously?
 - Pressure to repeal every year
- · Main policy question becomes
 - Can we get similar incentives with a different policy?

BUA650 - 43

Alternative: a cap and trade system

- Fuel users must own 1 permit per ton of CO2
- Limit the number of permits
- · Allow owners to buy and sell them
- Market price of a permit provides incentives
 - Example: \$15 per ton
 - Non-owners must buy; incentives similar to a carbon tax
 - Owners who can cut emissions for \$10: profitable to cut and sell

Problem with permits

- Guarantees emissions but does not limit costs
 - Market price may be very high if policy is unexpectedly stringent
- Congress likely to require cost containment provisions
 - A price ceiling or price collar

BUA650 - 45

Other policies: efficiency regulations

- Appliance standards
 - Energy ratings, Energy Star program
- Building codes
 - Insulation
 - Windows
- CAFE standards
 - Vehicle fuel efficiency requirements

Other policies: technology subsidies

- Subsidies for hybrid cars
- · Subsidies for alternative fuels
 - Corn-based ethanol not a good solution
 - Cellulosic ethanol great but expensive to produce
- Subsidies for R&D
 - A Manhattan Project for energy ?
- Carbon capture and sequestration
 - Would allow coal use without climate damage
 - Basic technologies are known
 - Need large scale demonstration projects

BUA650 - 47

No matter what, need fossil fuel prices to rise

- · Fossil fuels are currently very cheap
- Technology policies alone won't be enough
 - Unlikely to produce a "silver bullet" technology that would be cheaper than fossil fuels and also carbon-free