Maxwell Climate Change Workshop Background: The Nature of the Problem

Peter J Wilcoxen

Departments of Economics and Public Administration
The Maxwell School of Syracuse University

September 21, 2010

MCCW 2010, Background

Some undisputed facts

- Greenhouse gases (GHGs) can trap energy

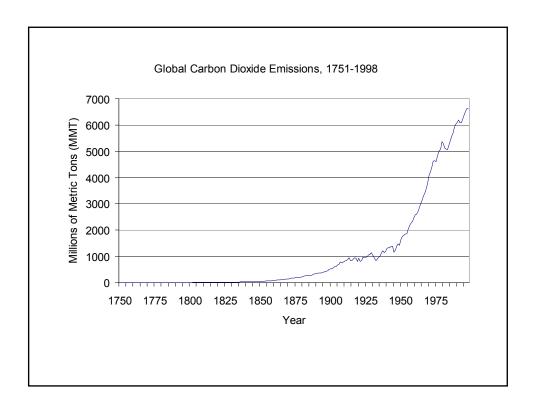
 - ⇒ Nitrous oxide (N2O)
 - ⇒ Halocarbons (CFC, HFC, PFC), SF6
- Non-anthropogenic but important
 - ⇒ Water vapor

MCCW 2010, Background

Gases vary in lifetime and effect

Gas	Atmospheric lifetime (years)	Global warming relative to CO2
Carbon dioxide (CO2)	50-200	1
Methane (CH4)	12	23
Nitrous oxide (N2O)	114	296
Halocarbons	260-50,000	5,700-22,200

Global Warming Potential (GWP)

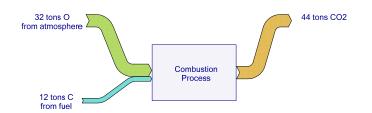

MCCW 2010, Background

3

Emissions of all GHGs have been rising

• Can see the pattern in CO2

MCCW 2010, Background



Units of measurement

- Carbon dioxide emissions measured two ways
 - ⇒ Tons of carbon -- tons of C
 - ⇒ Tons of carbon dioxide -- tons of CO2
- Two are related by molecular weights
 - ⇒ C molecular weight of 12
 - ⇒ O molecular weight of 16
 - \Rightarrow CO2 molecular weight of 12+16+16 = 44
- Equivalent climate effect:
 - ⇒ 12 tons C ⇔ 44 tons CO2

MCCW 2010, Background

Why two measures?

- C more convenient for input fuels
- CO2 more convenient for output gas
- How to convert units:
 - \Rightarrow 1 ton of C = 44/12 or 3.67 tons of CO2
 - \Rightarrow 1 ton of CO2 = 12/44 or 0.273 tons of C

MCCW 2010, Background

From emissions to concentrations...

- Greenhouse gas are trace gases
 - ⇒ Very small fraction of total atmosphere
- Emissions exceed natural removal
 - ⇒ Accumulation raises concentrations
- Concentrations have increased substantially
 - \Rightarrow CO₂ up 35% since the industrial revolution
 - ⇒ Was 280 ppm in 1750
 - ⇒ Now about 379 ppm

MCCW 2010, Background

Future concentrations?

- Uncertain but clearly rising rapidly
- Summarized in scenarios generated by the IPCC

MCCW 2010, Background

9

IPCC

- Intergovernmental Panel on Climate Change
 - ⇒ Established in 1988 by the WMO and UNEP
- Has issued 4 major "Assessment Reports"

First in 1990, Second ("SAR") in 1995, Third ("TAR") in 2001 Fourth report ("AR4") in 2007

- Numerous smaller and more specialized reports
 - ⇒ E.g., Special Report on Emissions Scenarios (SRES)
- Web site
 - ⇒ http://www.ipcc.ch/

MCCW 2010, Background

IPCC SRES scenarios

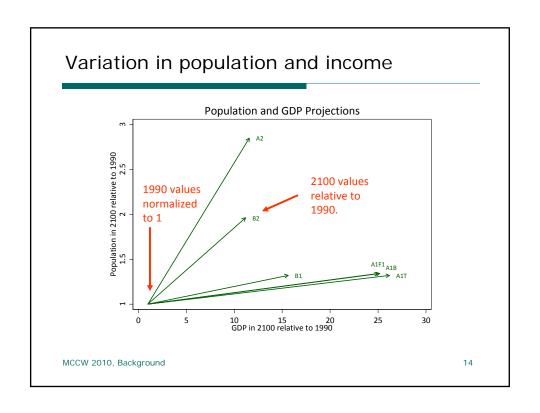
- Special Report on Emissions Scenarios (SRES)
- IPCC TAR Working Group III, 2000
- Revised emissions trajectories for climate models
 - ⇒ Replace previous IS92 scenarios
- Explicitly avoid probabilities
 - ⇒ "All are equally valid"

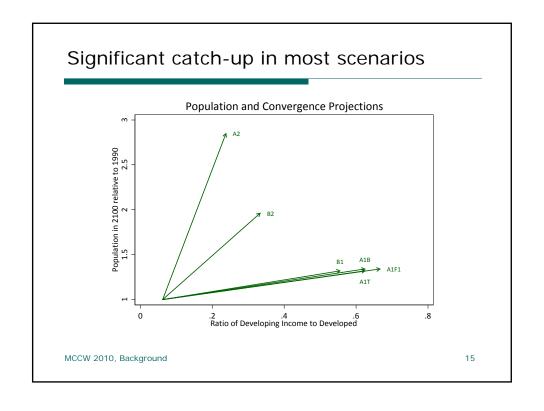
MCCW 2010, Background

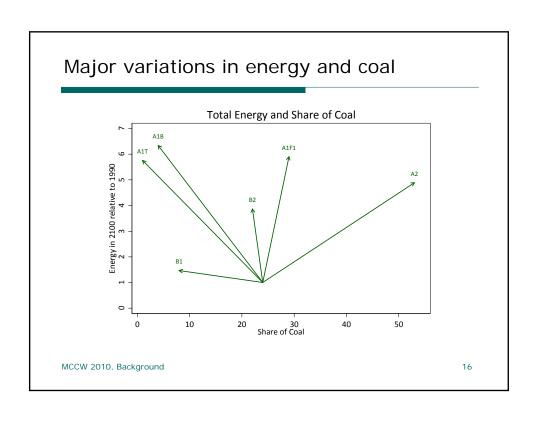
11

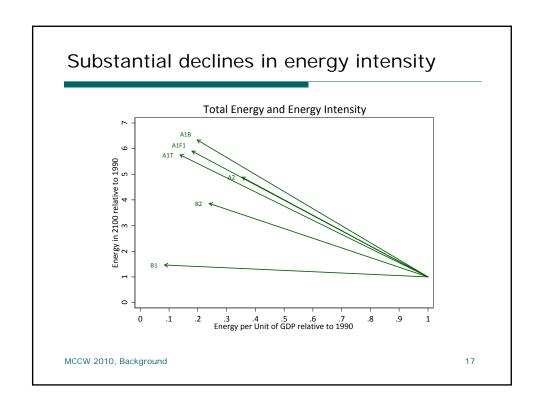
SRES driving factors

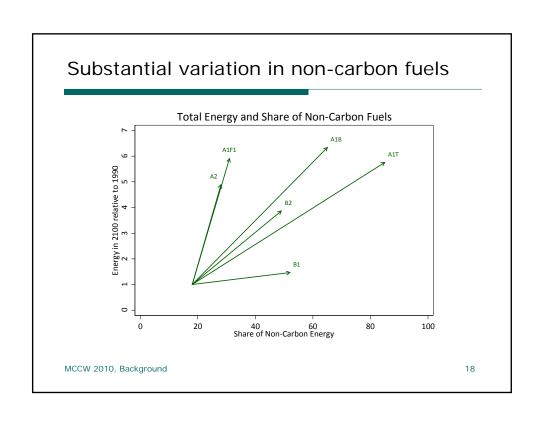
- Primary
 - **⇒** Population
 - ⇒ World economic growth
 - □ Income convergence (developing -> developed)
- Secondary


 - ⇒ Total primary energy consumption
 - ⇒ Share of coal in primary energy
 - ⇒ Share of non-carbon primary energy


MCCW 2010, Background


Combining assumptions ...


- Six families of scenarios
 - ⇒ Will discuss in more detail shortly
- A1 Family
 - ⇒ A1F1 Fossil-intensive energy
 - ⇒ A1T Primarily non-fossil energy
 - ⇒ A1B Balanced
- A2 Family
- B1 Family
- B2 Family

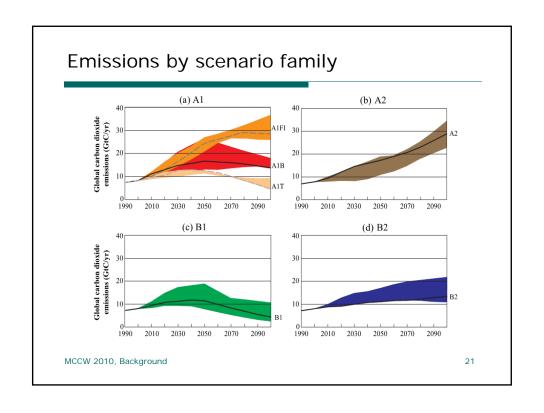

MCCW 2010, Background

Summarizing the scenarios

- A1: Common Characteristics
 - ⇒ Strong GDP growth
 - ⇒ Rapid income convergence
- A1F1
- A1T
 - ⇒ Mostly non-carbon energy
- A1B

- A2
 - ⇒ Rapid population growth
 - \Rightarrow Slow income convergence
 - ⇒ High energy intensity
 - ⇒ Heavy use of coal
- B1

 - ⇒ Rapid income convergence
- B2
 - ⇒ Between A2 and B1


MCCW 2010, Background

19

Next step: ran simulations

- Used six different models
- Many slight variations on the assumptions
- Generated a range of emissions trajectories

MCCW 2010, Background

Greenhouse gas concentrations in 2100

- Accumulated effect
 - ⇒ As of 2100
- Total burden expressed in terms of CO2 equivalent (CO2e)

IPCC Scenario	Concentration	
B1	600 ppm	
A1T	700 ppm	
B2	800 ppm	
A1B	850 ppm	
A2	1250 ppm	
A1F1	1550 ppm	

MCCW 2010, Background

... from concentrations to consequences

- · Higher GHG concentrations lead to ...
 - \Rightarrow Temperature changes
- Temperature changes lead to ...
 - ⇒ Sea level rise
 - ⇒ Changes in precipitation
 - ⇒ Extreme weather events and storm severity

 - ⇒ Expanded range of tropical diseases
 - ⇒ ..

MCCW 2010, Background

23

Current emissions to future effects

Today's concentration

Û

Current emissions

Û

Future concentrations

Û

Temperature change

Û

Ecological effects

Û

Economic effects

MCCW 2010, Background

Capsule summary

- Greenhouse gas emissions
- Concentrations
 - \Rightarrow Result of accumulated emissions over many years
 - ⇒ Rising at current rates of emissions
 - ⇒ Will accelerate if emissions continue to rise
- Temperature
 - \Rightarrow Depends on concentration, not directly on emissions

MCCW 2010, Background

25

Key implications

- Stabilizing emissions will not stabilize temperature

 - ⇒ Temperature rises as a result
- To stabilize concentrations ...
 - ⇒ Need very large cuts in worldwide emissions
- Even stabilizing concentration does not stabilize T
 - ⇒ "Committed warming" due to existing concentration

MCCW 2010, Background

Will need a suite of actions

- Abatement
 - ⇒ Reducing greenhouse emissions
- Adaptation
 - ⇒ Preparing for unavoidable changes
- Geoengineering
 - □ Deliberate modification of the climate

MCCW 2010, Background

27

Impacts of policies

Today's concentration

↓ ⇔Mitigation

Current emissions

↓ ←Geoengineering

Temperature change

↓ ←Geoengineering

Ecological effects

↓ ←Adaptation

MCCW 2010, Background

Many uncertainties remain

- Future emissions
- Amount and timing of temperature change
- Consequences of warming
- Potential for adaptation

MCCW 2010, Background

29

Some potential areas of uncertainty

Today's concentration

↓

Current emissions

↓

Future concentrations

↓

Temperature change

↓

Ecological effects

↓

Economic effects

MCCW 2010, Background

Concentration to temperature

- Translating change in concentration to change in temperature
 - ⇒ General circulation models (GCMs)
- Summary of uncertainties in GCMs is the "climate sensitivity":
 - Predicted temperature rise when CO2 concentrations double
 Pre-industrial levels of 280 ppm to 550 ppm

MCCW 2010, Background

31

Very difficult problem ...

- · Amount and timing of temperature increase unclear
 - ⇒ Feedback from water vapor
 - \Rightarrow Cloud formation
 - ⇒ Speed of ocean response
 - ⇒ Aerosols
- Estimated effect of doubling CO2 concentration
 - ⇒ 1896 estimate was 4-6 degrees C
 - ⇒ Current estimate (AR4) is 2-4.5 degrees C
 - ⇒ Mean estimate has fallen somewhat
 - ⇒ Range of estimate has not decreased

MCCW 2010, Background

Main effect of ΔT is higher risks

Example: sea level rise

 $\Rightarrow \quad \textit{If ΔT is 1 °C} \qquad \begin{array}{c} \textit{chance of SMALL rise:} & \textit{high} \\ \textit{chance of moderate rise:} & \textit{medium} \\ \textit{chance of LARGE rise:} & \textit{low} \end{array}$

 $\Rightarrow \quad \textit{If ΔT is 6 °C} \qquad \quad \textit{chance of SMALL rise:} \qquad \quad \textit{low} \\ \quad \textit{chance of moderate rise:} \qquad \quad \textit{high} \\ \quad \textit{chance of LARGE rise:} \qquad \quad \textit{medium}$

• Increases probabilities of bad outcomes

MCCW 2010, Background

33

Implications

- Each ton of emissions raises risks a little
 - ⇒ Every ton has some effect
 - ⇒ No single ton triggers a catastrophe
- Not a threshold problem
 - ⇒ No "safe" level below which risks are zero

MCCW 2010, Background

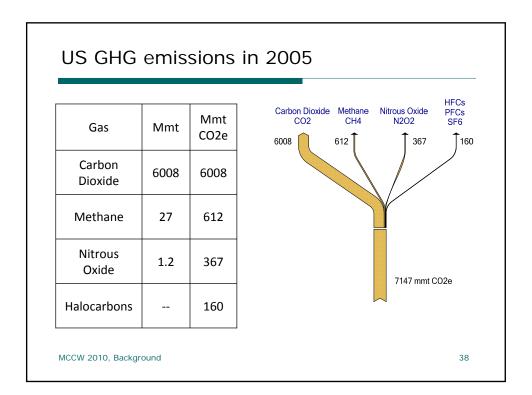
Really no threshold?

- Discontinuous health problems are familiar
 - **⇒** Cancer
- No sharp threshold in causes
 - ⇒ Which cigarette?
 - ⇒ Which ice cream cone?
- Will have important implications for abatement policies

MCCW 2010, Background

35

Examine mitigation in detail


MCCW 2010, Background

CO2 is especially important

- World emissions (weighted by GWP)
 - ⇒ 73% CO2
 - ⇒ 14% methane
 - ⇒ 8% nitrous oxide
 - ⇒ 5% other
- US emissions (weighted by GWP)
 - ⇒ 84% CO2
 - ⇒ 9% methane
 - ⇒ 5% nitrous oxide
 - ⇒ 2% other

MCCW 2010, Background

37

Controlling CO2 emissions

- Result of combustion of fossil fuels
 - ⇒ Natural result of combustion
 - ⇒ Not an impurity like sulfur
 - ⇒ Not from poor combustion (ozone, NOx, particulates)
- Reductions require either or both of the following
 - ⇒ Reduction in fuel use
 - ⇒ Capture and sequestration of CO2
- Need to understand the energy sector in detail

MCCW 2010, Background

39

Units again: what is a "quad"?

- US national energy use is measured in quadrillions of BTU
 - ⇒ BTU = British Thermal Unit
 - ⇒ Quadrillion = 10^15
 - ⇒ 1 quad = 10^15 BTU
- Metric equivalent is an Exajoule (10^18 J)
 - ⇒ 1 quad = 1.055 EJ
- How big is a quad?
 - \Rightarrow Energy in 45 million tons of coal OR
 - \Rightarrow 1 trillion cubic feet of natural gas OR
 - ⇒ 170 million barrels of crude oil

MCCW 2010, Background

Putting a quad in perspective ...

- Coal delivered by "unit trains"
 - ⇒ 100 cars, about 1 mile long
- 1 train = 10,000 tons of coal
 - ⇒ Fuels a 500 MW power plant for about 2.5 days
- 1 quad = 4,500 unit trains
- Powder River Basin in WY:
 - ⇒ 60 trains a day

MCCW 2010, Background

4

How many supertankers?

• 1 tanker = 1 million barrels of oil

- 1 quad = 170 tankers
- US used 21 million barrels per day (57% imported) in 2005

MCCW 2010, Background

Translating energy into CO2

- Natural gas
 - ⇒ 14.5 mmt C per quad
 - ⇒ Lowest carbon per quad of fossil fuels
- Oil
 - ⇒ About 20 mmt C per quad
 - ⇒ 38% more carbon than gas
- Coal
 - ⇒ 26 mmt C per quad
 - ⇒ 80% more carbon than gas

MCCW 2010, Background

43

How much energy is used?

- Total primary energy
 - ⇒ Includes fossil fuels used to generate electricity
- World energy consumption is about 400 quads
 - ⇒ 1 quad every 22 hours
- US consumption is about 100 quads
 - ⇒ Equivalent barrels of oil: 46 million per day
 - ⇒ Equivalent tons of coal: 12 million per day

MCCW 2010, Background

How much CO2 is produced?

- Worldwide in 2004
 - ⇒ CO2 from fossil fuels: 27.7 Gt
- US in 2005 emissions
 - ⇒ CO2 from fossil fuels: 6.0 Gt

MCCW 2010, Background