Maxwell Climate Change Workshop: The US Energy Sector and CO2 Emissions

Peter J Wilcoxen

Departments of Economics and Public Administration

The Maxwell School of Syracuse University

October 5, 2010

MCCW 2010, Energy

Three options for abatement

- Fuel switching
 - ⇒ Shift to fuels with lower CO2 for equivalent energy Example: coal to gas for electricity
- Efficiency improvements
 - ⇒ Use less fuel for equivalent energy services
 Example: better lights
- Reductions in demand for energy services
 - □ Demand lower services
 Example: turn lights off

MCCW 2010, Energy

Vehicles

- Almost exclusively use oil
- Emissions shares by type of fuel
 - ⇒ 12% jet fuel
 - ⇒ 22% diesel
 - ⇒ 63% gasoline
 - ⇒ 3% other

MCCW 2010, Energy

Abating vehicle emissions

- Shift fuel mix -- less CO2 per unit of energy
 - ⇒ Toward natural gas
 - ⇒ Toward biofuels (really feasible?)
 - □ Toward electricity with sequestration
- Improve fuel efficiency -- less energy per mile
 - ⇒ Hybrids
 - ⇒ Advanced diesel
 - \Rightarrow Public transportation
- Reduce driving -- fewer miles

 - ⇔ Change habits

MCCW 2010, Energy

Electric sector has multiple roles

- Adapting to climate change
 - ⇒ Higher summer temperatures
- Implementing climate policies
 - □ Generation and delivery of renewable power
 - \Rightarrow Replace on-site fuel use in order to sequester carbon
 - ⇒ Support plug-in hybrids
- Implications
 - \Rightarrow Even greater role for the grid

MCCW 2010, Energy

11

Electricity units

- Electric power and generating capacity
 - ⇒ Rate of electricity generation at a point in time
 - ⇒ Measured in watts (W)
 - ⇒ 1 Megawatt (MW) =10^6 watts
 - ⇒ 1 Gigawatt (GW) = 10^9 watts
 - ⇒ 1 Terawatt (TW) = 10^12 watts
- Electric energy

 - \Rightarrow Gigawatt-year = 8.76 x 10^12 Wh
 - \Rightarrow Gigawatt-year = 8.76 TWh

MCCW 2010, Energy

Typical coal plant

- AES Somerset on Lake Ontario
- 655 MW capacity
- Output in 2005:
 - ⇒ 91% utilization
 - ⇒ 5.2 million MWh
- Waste:

MCCW 2010, Energy

17

Conventional Thermal Power Plant Boiler Steam Turbine Electricity Coal,Oil, Gas or Biomass Typical Efficiency: 33% MCCW 2010, Energy

Typical nuclear plant

- Nine Mile Point
- Two reactors:
 - ⇒ 620 MW, 1970
 - ⇒ 1138 MW, 1988
- Output in 2007:
 - ⇒ 91% cap utilization
 - ⇒ 14 million MWh
- Waste:
 - ⇒ 0.006 lbs/MWh
 - ⇒ 38 t/year

MCCW 2010, Energy

Horizontal axis wind turbines 1.75 MW Turbine, Australia 2 MW Turbine, Wales WCCW 2010, Energy 2 MW Turbine, Wales

Key problem for power producers...

- Need to follow variations in demand
 - ⇒ Electricity essentially non-storable at the grid level
- Power demand varies strongly over the day
 - ⇒ Higher during the day than at night
- Also varies strongly over the year
 - ⇒ Higher in the summer due to air conditioning

MCCW 2010, Energy

Real time California ISO load curve

- Independent System Operator (ISO)
 - Operates part of the electrical grid
- Data for Feb 3, 2010
- Demand (red curve):
 - ⇒ Min about 3 am, 20 GW
 - ⇒ Max about 7 pm, 30 GW
- Capacity (green curve):
 - *⇒* 28-32 GW

MCCW 2010, Energy

31

Types of generators

- Base load
 - ⇒ Run almost all the time
 - ⇒ Expensive to build, slow start, cheap to run
 - ⇒ Coal, nuclear
- Peaking
 - ⇒ Run during peak periods
 - \Rightarrow Cheap to build, quick start, expensive to run
- Intermittent
 - ⇒ Weather dependent: wind, solar, not dispatchable

MCCW 2010, Energy

Summary of generation mix

Fuel	Capacity	Generation	Fossil Fuel Use	Carbon
ruei	(GW)	(GWyr)	(Quads)	(Mmt C)
Oil	57	7	0.6	13
Gas	374	84	6.4	93
Coal	310	224	20.5	532
Fossil total	741	315	27.5	638
Nuclear	100	90		
Renewables	116	39		
Total	958	444	27.5	638

MCCW 2010, Energy

33

Leading options for replacing fossil

- Integrated gasification combined cycle coal (IGCC)
 - ⇒ With carbon capture and sequestration (CCS)
- Combined cycle gas (CC)
 - ⇒ With CCS
- Nuclear
- Renewables
 - ⇒ Biomass
 - ⇒ Hydro
 - ⇒ Wind
 - ⇒ Solar thermal, photovoltaic

MCCW 2010, Energy

Advanced coal power plants

Integrated gasification combined cycle (IGCC)

http://www.powergeneration.siemens.com/press/press-pictures/igcc/igcc-puertollano1.htm

MCCW 2010, Energy

35

Cost of building new power plants

Technology	Capital cost per GW of capacity	Technology	Capital cost per GW of capacity
Coal	\$2.1 B	Adv Nuclear	\$3.3 B
IGCC	\$2.4 B	Biomass	\$3.8 B
IGCC with CCS	\$3.5 B	Hydro	\$2.2 B
Nat Gas CC	\$0.9 B	Onshore Wind	\$1.9 B
CC with CCS	\$1.9 B	Solar Thermal	\$5.0 B
		Solar/PV	\$6.0 B

MCCW 2010, Energy

Replacing fossil completely?

- Need about 550 GW total
 - ⇒ 330 GW baseload
 - ⇒ 220 GW peaking
- Fossil with CCS
 - ⇒ 410 GW of IGCC CCS coal (80% utilization) = \$1.4 T
 - \Rightarrow 220 GW of CC CCS gas = \$420 B Total = \$1.8T
- Intermittent renewables
 - \Rightarrow 1300 GW of wind (25% utilization) = \$2.5 T
 - \Rightarrow 220 GW of CC CCS gas = \$420 B Total = \$2.9 T

MCCW 2010, Energy

37

Replacing fossil capacity, continued

- Not impossible but definitely expensive
- Also, very uncertain
 - ⇒ No large scale CCS plants
- Population growth makes things worse

MCCW 2010, Energy

Transmission grid

- Can we get power where it's needed?
- Especially important for wind and solar
 - \Rightarrow Best locations are far from cities
 - ⇒ Need geographic dispersion

MCCW 2010, Energy

More grid capacity needed for wind

Variation in wholesale electricity prices due to grid congestion

Figure 2.2-3 Contour Map of Annual Load Weighted LMP

From "2006 Midwest ISO-PJM Coordinated System Plan (CSP)," December 2006.

MCCW 2010, Energy

41

Very important implication

- Would be less expensive if demand were lower
- Need to reduce fuel use on the demand side

MCCW 2010, Energy

What do people do with energy?

- Very quick overview of non-transportation use
- Residential and commercial
 - ⇒ Heating

 - ⇒ Water heating
 - ⇒ Appliances
- Industry

 - ⇒ Mostly in the production process

MCCW 2010, Energy

Model used (fitted equation)

- Exponential growth at unknown rate g:
 - $\Rightarrow Y = A*exp(g*t)$
- Estimated over 1945-1973
- Statistical results:
 - \Rightarrow Adjusted R-squared = 0.98
 - \Rightarrow Parameter g = 0.0341 (standard error 0.0010)
- Trivial model appears to work really well:
 - ⇒ Explains 98% of the variation
 - ⇒ Tightly estimated parameters

MCCW 2010, Energy

Two big lessons

- Energy prices matter!
 - ⇒ Price spikes:

Stabilized US energy consumption for about 20 years

⇔ GDP growth:

Slightly slower: about 0.2% per year

- Be wary about projections
 - \Rightarrow Good fit does not automatically mean a model is useful

MCCW 2010, Energy

What about rates of growth?

- Low growth in primary energy:
 - ⇒ Residential

 - **⇒** Industrial
- Electricity and transportation
 - *⇔* Slower post 1973
 - ⇒ Electricity: 6.5% annually before, 2.2% since
 - ⇒ Transportation: 3.5% annually before, 1.3% since
- For reference
 - ⇒ Population growth: 1.5% before, 1.1% since

MCCW 2010, Energy

