Individual Demand

Start by graphing WTP bids for person A:

Waiver	WTP
1	10
2	10
3	5
4	5

Height: WTP for a particular waiver

WTP(Q) = WTP for waiver number Q

A's WTP for waiver 2 is $WTP_A(2) = 10$

A's WTP for waiver 3 is $WTP_A(3) = 5$

WTP for several waivers?

Add up WTP's for individual waivers

WTP for *N* waivers:

$$\sum_{i}^{N} WTP(Q_i)$$

Example: A's WTP for waivers 1 & 2

$$WTP_A(1) + WTP_A(2) = 10 + 10 = 20$$

Can also find quantity A would **buy** at a given price P:

A's decision rules:

- 1. Buy any units with $WTP_A > P$ (net gain)
- 2. Buy any units with $WTP_A = P$ (indifferent)
- 3. Don't buy units with $WTP_A < P$

Result: A's demand at P

Example: suppose P = 6:

Applying decision rules:

Waiver	WTP	Р	Net	Buy?
1	10	6	+4	Yes
2	10	6	+4	Yes
3	5	6	-1	No
4	5	6	-1	No

Gain on purchased waivers is consumer surplus (CS):

Consumer surplus (CS) on a single waiver *i*:

$$CS_i = WTP_i - P$$

Person A, waivers 1 and 2: $CS_1 = 4$, $CS_2 = 4$

Consumer surplus on purchase of N waivers:

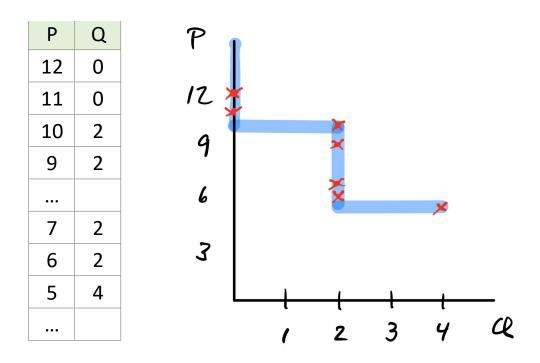
$$CS = \sum_{i}^{N} CS_{i}$$

Person A, total: $CS = CS_1 + CS_2 = 4 + 4 = 8$

Demand curve is Q demanded for each possible P:

• Start at high price and sweep down axis:

Basics Page 3



Third use of data beyond WTP(Q) and $Q^{D}(P)$:

Marginal benefit (MB) of giving someone a unit

Take to be equal to what they would have been WTP:

 $MB_i = WTP_i$

Giving person A waiver 1: $MB_1 = 10$

Market Demand

Market demand is the sum of individual demands:

$$Q_M^D = \sum_i^N Q_i^D(P)$$

 Λ Sum of Qs, not WTPs Λ

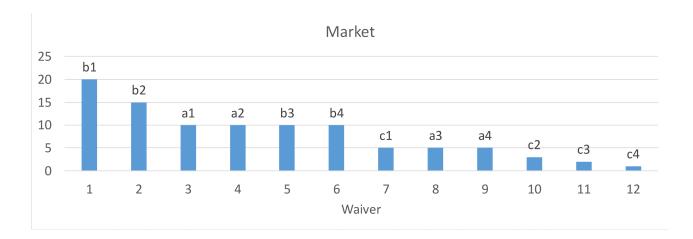
Computing for three people: A, B and C:

Individual WTP data:

Waiver	WTP _A	WTP_B	WTP _C
1	10	20	5
2	10	15	3
3	5	10	2
4	5	10	1

Market demand:

- As before, start with high prices and sweep down
- Count individual waivers demanded at each price
- In effect, lists bids from highest to lowest



Height of curve at given Q is WTP:

 $WTP_M(Q_i)$ = WTP by the buyer of unit Q_i

Examples:

- Waiver 2 (b2) has $WTP_M(2) = 15$
- Waiver 6 (b4) has $WTP_M(6) = 10$

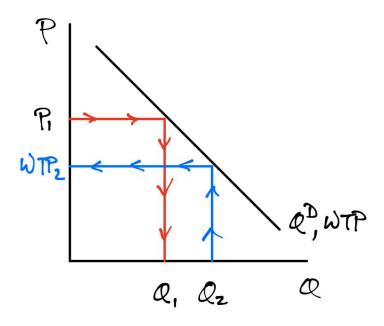
Width of curve at a given P is demand:

 $Q_M^D(P)$ = quantity demanded at a given P

Examples:

- At P = 12, $Q_M^D = 2$
- At P = 9, $Q_M^D = 6$

Abstract, stylized WTP and demand curve:



Red: From P_1 can infer Q_1

Blue: From Q_2 can infer WTP_2

Individual Supply

Start by graphing WTA bids for person E:

WaiverWTA115

Height: WTA for the waiver

E's WTA for waiver is $WTA_E(1) = 15$

Can also find quantity E would sell at a given price P:

E's decision rules:

- 1. Sell if $P > WTA_E$ (net gain)
- 2. Sell if $P = WTA_E$ (indifferent)
- 3. Don't sell if $P < WTA_E$

Result: E's supply at P

Example: suppose P = 20

$$P = $20$$

 $WTA_E(1) = 15

Would sell 1 waiver

Gain on sold waivers is producer surplus (PS)

Producer surplus (PS) on a single waiver *i*:

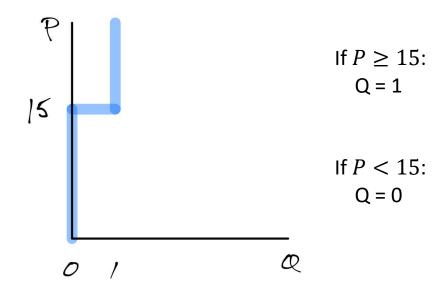
 $PS_i = P - WTA_i$

E's surplus: $PS_1 = $20 - $15 = 5

Producer surplus on sales of N waivers:

$$PS = \sum_{i}^{N} PS_{i}$$

Supply curve is the Q supplied for each possible P:



Market Supply

Market supply is the sum of individual supplies:

$$Q_M^S = \sum_i^N Q_i^S(P)$$

⚠ Sum of Qs, not WTAs ⚠

Extracting 2 more WTA bids:

 $WTA_E = \$15$ $WTA_F = \$20$ $WTA_G = \$5$

Individual supplies:

Market supply:

- Here, start with low prices and sweep up
- Count individual waivers supplied at each price
- In effect, lists bids from lowest to highest

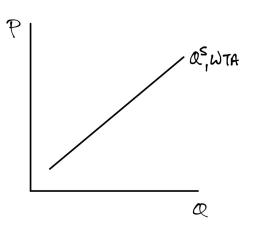
Height of curve:

 $WTA_M(Q_i)$ = WTA by the seller of unit Q_i

Width of curve:

 $Q_M^S(P)$ = quantity supplied at a given P

Abstract, stylized WTA and supply curve:



Market Equilibrium

Now have market demand and supply:

Demand	Supply
$Q_M^D(P)$	$Q_M^S(P)$

Give Q^D and Q^S for every possible price P

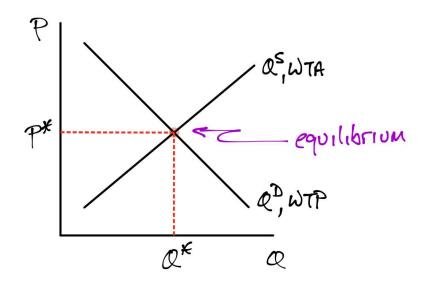
Can use to find *equilibrium price* P^* where Qs are equal:

Solve for P^* that makes $Q_M^D(P^*) = Q_M^S(P^*)$

Corresponding Q is the *equilibrium quantity* Q*:

$$Q_M^D(P^*) = Q_M^S(P^*) = Q^*$$

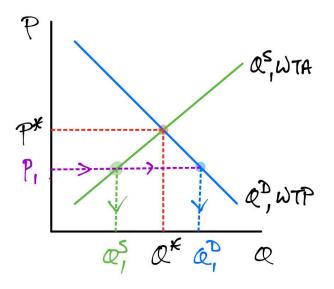
Graphically, the equilibrium is where the curves cross:



Equilibrium:

- P is stable: no forces pushing it up or down
- All other prices are **not** stable:

Case 1: P_1 below P^*

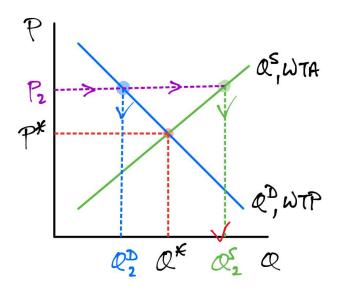


Buyers want more: $Q_M^D(P_1) > Q^*$ Sellers sell less: $Q_M^S(P_1) < Q^*$

$$Q_M^D(P_1) > Q_M^S(P_1)$$

- Excess demand
- Price will tend to rise

Case 2: P_2 above P^*



Buyers want less: $Q_M^D(P_2) < Q^*$ Sellers sell more: $Q_M^S(P_2) > Q^*$

 $Q^D_M(P_2) < Q^S_M(P_2)$

- Excess supply
- Price will tend to fall

Finding P^* and Q^* algebraically:

Can solve either equation:

(I) Use demand = supply and solve for P^* first:

Solve for
$$P^*$$
: $Q^D_M(P^*) = Q^S_M(P^*)$
Solve for Q^* : $Q^* = Q^D_M(P^*)$ or $Q^* = Q^S_M(P^*)$

OR, (II) use WTP = WTA and solve for Q^* first:

Solve for
$$Q^*$$
: $WTP_M(Q^*) = WTA_M(Q^*)$
Solve for P^* : $P^* = WTP(Q^*)$ or $P^* = WTA(Q^*)$