Start by graphing WTP bids for person A:

Waiver	WTP
1	10
2	10
3	5
4	5

Height: WTP for a particular waiver
$W T P(Q)=$ WTP for waiver number Q
A's WTP for waiver 2 is $W T P_{A}(2)=10$
A's WTP for waiver 3 is $W T P_{A}(3)=5$

WTP for N waivers:

$$
\sum_{\mathrm{i}}^{\mathrm{N}} \operatorname{WTP}\left(Q_{i}\right)
$$

Example: A's WTP for waivers 1 \& 2

$$
W T P_{A}(1)+W T P_{A}(2)=10+10=20
$$

Can also find quantity A would buy at a given price P :

A's decision rules:

1. Buy any units with $W T P_{A}>P$ (net gain)
2. Buy any units with $W T P_{A}=P$ (indifferent)
3. Don't buy units with $W T P_{A}<P$

Result: A's demand at P

Example: suppose $P=6$:

Applying decision rules:

Waiver	WTP	P	Net	Buy?
1	10	6	+4	Yes
2	10	6	+4	Yes
3	5	6	-1	No
4	5	6	-1	No

Gain on purchased waivers is consumer surplus (CS):
Consumer surplus (CS) on a single waiver i :

$$
C S_{i}=W T P_{i}-P
$$

Person A, waivers 1 and 2: $C S_{1}=4, C S_{2}=4$

Consumer surplus on purchase of N waivers:

$$
\begin{aligned}
& C S=\sum_{i}^{N} C S_{i} \\
& \quad \text { Person A, total: } C S=C S_{1}+C S_{2}=4+4=8
\end{aligned}
$$

Demand curve is Q demanded for each possible P :

- Start at high price and sweep down axis:

P	Q
12	0
11	0
10	2
9	2
\ldots	
7	2
6	2
5	4
\ldots	

Third use of data beyond $W T P(Q)$ and $Q^{D}(P)$:
Marginal benefit (MB) of giving someone a unit
Take to be equal to what they would have been WTP:
$M B_{i}=W T P_{i}$
Giving person A waiver 1: $M B_{1}=10$

Market Demand

Market demand is the sum of individual demands:

$$
Q_{M}^{D}=\sum_{i}^{N} Q_{i}^{D}(P)
$$

\triangle Sum of Qs, not WTPs \triangle

Computing for three people: A, B and C :
Individual WTP data:

Waiver	$W T P_{A}$	$W T P_{B}$	$W T P_{C}$
1	10	20	5
2	10	15	3
3	5	10	2
4	5	10	1

C's Bids

Market demand:

- As before, start with high prices and sweep down
- Count individual waivers demanded at each price
- In effect, lists bids from highest to lowest

Market

Height of curve at given Q is WTP:
$W T P_{M}\left(Q_{i}\right)=$ WTP by the buyer of unit Q_{i}

Examples:

- Waiver 2 (b2) has $W T P_{M}(2)=15$
- Waiver $6(\mathrm{~b} 4)$ has $W T P_{M}(6)=10$

Width of curve at a given P is demand:
$Q_{M}^{D}(P)=$ quantity demanded at a given P
Examples:

- At $P=12, Q_{M}^{D}=2$
- At $P=9, Q_{M}^{D}=6$

Abstract, stylized WTP and demand curve:

Red:
From P_{1} can infer Q_{1}

Blue:
From Q_{2} can infer WTP_{2}

Individual Supply

Start by graphing WTA bids for person E:

Waiver	WTA
1	15

Height: WTA for the waiver

E's WTA for waiver is $W T A_{E}(1)=15$

Can also find quantity E would sell at a given price P:

E's decision rules:

1. Sell if $P>W T A_{E}$ (net gain)
2. Sell if $P=W T A_{E}$ (indifferent)
3. Don't sell if $P<W T A_{E}$

Result: E's supply at P

Example: suppose $P=20$

$$
\begin{aligned}
& P=\$ 20 \\
& W T A_{E}(1)=\$ 15
\end{aligned}
$$

Would sell 1 waiver

Gain on sold waivers is producer surplus (PS)
Producer surplus (PS) on a single waiver i :

$$
P S_{i}=P-W T A_{i}
$$

E's surplus: $P S_{1}=\$ 20-\$ 15=\$ 5$

Producer surplus on sales of N waivers:

$$
P S=\sum_{i}^{N} P S_{i}
$$

Supply curve is the Q supplied for each possible P :

$$
\begin{aligned}
& \begin{array}{l|l}
P & \\
& \\
& \text { If } P \geq 15: \\
Q=1 \\
& \\
& \text { If } P<15: \\
Q=0
\end{array} \\
& 01 Q
\end{aligned}
$$

Market supply is the sum of individual supplies:

$$
Q_{M}^{S}=\sum_{i}^{N} Q_{i}^{S}(P)
$$

\triangle Sum of Qs, not WTAs \triangle

Extracting 2 more WTA bids:

$$
\begin{aligned}
& W T A_{E}=\$ 15 \\
& W T A_{F}=\$ 20 \\
& W T A_{G}=\$ 5
\end{aligned}
$$

Individual supplies:

Market supply:

- Here, start with low prices and sweep up
- Count individual waivers supplied at each price
- In effect, lists bids from lowest to highest

Height of curve:
$W T A_{M}\left(Q_{i}\right)=$ WTA by the seller of unit Q_{i}

Width of curve:
$Q_{M}^{S}(P)=$ quantity supplied at a given P

Abstract, stylized WTA and supply curve:

Now have market demand and supply:

Demand	Supply
$Q_{M}^{D}(P)$	$Q_{M}^{S}(P)$

Give Q^{D} and Q^{S} for every possible price P

Can use to find equilibrium price P^{*} where Qs are equal:
Solve for P^{*} that makes $\mathrm{Q}_{\mathrm{M}}^{\mathrm{D}}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)$
Corresponding Q is the equilibrium quantity Q^{*} :

$$
Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)=Q^{*}
$$

Graphically, the equilibrium is where the curves cross:

Equilibrium:

- P is stable: no forces pushing it up or down
- All other prices are not stable:

Case 1: P_{1} below P^{*}

Buyers want more: $Q_{M}^{D}\left(P_{1}\right)>Q^{*}$
Sellers sell less: $\quad Q_{M}^{S}\left(P_{1}\right)<Q^{*}$

$$
Q_{M}^{D}\left(P_{1}\right)>Q_{M}^{S}\left(P_{1}\right)
$$

- Excess demand
- Price will tend to rise

Case 2: P_{2} above P^{*}

Buyers want less: $Q_{M}^{D}\left(P_{2}\right)<Q^{*}$
Sellers sell more: $Q_{M}^{S}\left(P_{2}\right)>Q^{*}$
$Q_{M}^{D}\left(P_{2}\right)<Q_{M}^{S}\left(P_{2}\right)$

- Excess supply
- Price will tend to fall

Finding P^{*} and Q^{*} algebraically:

Can solve either equation:
(I) Use demand = supply and solve for P^{*} first:

Solve for $P^{*}: Q_{M}^{D}\left(P^{*}\right)=Q_{M}^{S}\left(P^{*}\right)$
Solve for $Q^{*}: Q^{*}=Q_{M}^{D}\left(P^{*}\right)$ or $Q^{*}=Q_{M}^{S}\left(P^{*}\right)$
OR, (II) use WTP = WTA and solve for Q^{*} first:

Solve for $Q^{*}: W T P_{M}\left(Q^{*}\right)=W T A_{M}\left(Q^{*}\right)$
Solve for $P^{*}: P^{*}=W T P\left(Q^{*}\right)$ or $P^{*}=W T A\left(Q^{*}\right)$

