
A050

Rough, practical definition:

A function is a named block of code that:

Starts with a def statement1.
Includes subsequent indented lines2.

Is called or invoked (executed) by its name 3.

Accepts [usually] a list of arguments or parameters (inputs)4.
Returns [usually] a result (output)5.

Schematically:

Some examples to date:

Function call Arguments Returned
a_len = len(a_list) a_list Length of a_list
print("The length is:", a) "The length is:", a Nothing: prints message
sorted_oath = sorted(oath) oath Sorted list
somelist.append(item) item Nothing: somelist updated

Creating a function: summing up a list

C: Functions

 Topics Page 1

Creating a function: summing up a list

Defining function sumup():

def sumup(values):
 total = 0
 for v in values:
 total = total + v
 return total

values: argument (input)

total: returned (output)

Recent versions of Python allow type hinting:

def sumup(values: list) -> float:
 total = 0
 for v in values:
 total = total + v
 return total

Hints that values should be a list
and the function returns a float

Some common types: str, int, float, bool, list, dict, tuple

Aside: to find out the type of a variable use the type function:

x = "otto"
print(type(x)) Prints str

Calling the function (using it):

nums1 = [1, 2, 3, 4]
 Topics Page 2

nums1 = [1, 2, 3, 4]

tot1 = sumup(nums1)

print(tot1)

Calls sumup on nums1

prints 10

Arguments are variables passed from outside the function to inside it

Linked by definition and call:•

Definition: def sumup(values):

 ↕
Call: tot1 = sumup(nums1)

In effect, call works like this:

Implicit assignment at start of function:

values ⬅ nums1

Makes an inside copy of the outside variable

•

Same process for multiple arguments:•

Outside and inside variables [generally] matched by position

 Topics Page 3

Definition: def other(alpha, beta, gamma):

 ↕ ↕ ↕
Call: res = other(12, "tons", 3.14)

Implicit assignments within other():

alpha ⬅ 12
beta ⬅ "tons"
gamma ⬅ 3.14

Benefits of functions:

Make repeat calculations easier:1.

Don't have to write the same code multiple times

Make code shorter and logic cleaner and clearer (more readable):

With sumup() Without sumup()
nums1 = [1,2,3,4]
nums2 = [9,8,7]

tot1 = sumup(nums1)
tot2 = sumup(nums2)

print(tot1,tot2)

nums1 = [1,2,3,4]
nums2 = [9,8,7]

tot1 = 0
for v in nums1:
 tot1 = tot1 + v
tot2 = 0
for v in nums1:
 tot2 = tot2 + v

print(tot1,tot2)

2.

 Topics Page 4

Make code more reliable:

One version to get right rather than several

Coder mantra: "Don't repeat yourself"

3.

Exception to positional matching: optional arguments with default values:

Defining a function with a default:

def sumup2(values: list, start: float = 0) -> float:
 total = start
 for v in values:
 total = total + v
 return total

start is optional:
if not given, it will
default to 0

Type hints for optional arguments go between the name and the equals

With a default, start:
Can be omitted (default argument)1.
Can be given second with no name ("positional" argument)2.
Can be given by name ("keyword" argument)3.

Using the function:

vals = [10,20,30]

tot1 = sumup2(vals) tot1 👉 60 default

tot2 = sumup2(vals, 5) tot2 👉 65 positional

tot3 = sumup2(vals, start=10) tot3 👉 70 keyword

 Topics Page 5

Very powerful feature: can use keyword arguments selectively and in any order:

def sumup3(values, start=0, power=1):
 total = start
 for v in values:
 total = total + v**power
 return total

vals = [10,20,30]

tot4 = sumup3(vals, start=5) tot6 👉 65
tot5 = sumup3(vals, power=2) tot7 👉 1400
tot6 = sumup3(vals, power=2, start=40) tot8 👉 1440

Very important subtlety with functions: variable scoping:

Scope of a variable: portion of code where it is defined and can be used

Key issue: what values do variables have inside and outside the function?

Roughly speaking:

Functions have their own copies of variables•
Changes inside functions generally do not change variables outside•

Example:

 Topics Page 6

Define a function:

def fun(a):
 a = a + 2
 b = a**2 + c
 return b

a: argument and also changed within the function
b: set within function
c: from outside the function

Using it:

a = 10
b = 20
c = 30
d = fun(5)
print([a, b, c, d])

What gets printed?

Outside Inside fun() How set?

a 👉 10
b 👉 20
c 👉 30

Set outside
Set outside
Set outside

d = fun(5) a 👉 5
a 👉 5+2 👉 7
c 👉 30
b 👉 7**2 + 30 👉 79

Given as an argument
Revised in function
Read from outside function
Calculated in function

d 👉 79 Returned by function

👉 Unchanged
 Topics Page 7

a 👉 10
b 👉 20
c 👉 30

Unchanged
Unchanged
Unchanged

Printed result: [10,20,30,79]

Why important?

Functions can't accidentally damage outside variables•
Can be written without knowing every possible context•

Note: best practice about passing variables to functions:

If possible, include all outside variables in the argument list•
Avoid using other external variables•

 Topics Page 8

