C: Solving equations

Very frequent task in numerical analysis:

Given a function f(x)Find an x^* such that $f(x^*) = 0$

Some examples:

- IRR calculation: Find an r^* such that $NPV(r^*) = 0$
- Market equilibrium: Find a price p^* such that $Q^D(p^*) - Q^S(p^*) = 0$
- Carbon tax t* to reduce emissions to a target level
- Clean energy credit c^* that causes renewable electricity to hit 50%
- Low income tax credit z^* to eliminate regressivity of a tax
- ... many, many, many more

Core technique is Newton's Method:

Iterative process with repeated trials:

- 1. At trial i, guess x_i
- 2. Evaluate $f(x_i)$ to find the miss distance: $f(x_i) = m_i$
- 3. If m_i isn't 0, revise the guess to x_{i+1} and try again

Schematically:

The heart of Newton's Method is the revision procedure:

- Uses the slope of the function at x_i
- Very fast in a wide range of cases

Graphically:

Initial guess and miss distance:

Calculate slope of the function and use it to find a new guess:

Why try this?

Hits x^* on the first try if f is linear

Still makes a big improvement for many other functions.

Algebraically, if the slope at x_0 is s_0 , can show:

$$x_1 = x_0 - \frac{m_0}{s_0}$$

Updating x, m and s and generating a new guess x_2 :

Calculating its value:

$$x_2 = x_1 - \frac{m_1}{s_1}$$

Repeat until
$$m_i = f(x_i) = 0$$

Outline of invoking Newton in Python:

- 1. Import the **scipy** module
- 2. Define a **miss distance** function
- 3. Create a starting guess
- 4. Call the Newton's Method function in scipy; will return x^*

Sketching the code:

- 1 import scipy.optimize as opt
- 2 def miss_func(guess:float, ...) -> float: ... return miss
- 3 start_guess = ...
- 4 sol = opt.newton(miss_func, start_guess, ...)

Variable sol will be the solution x^*

Minor complication: passing additional variables to the miss function

- The **miss** function usually takes **several arguments**: Example: npv(r, cashflow)
- opt.newton() iterates over guesses of the **first argument** Example: r
- Pass additional arguments as a LIST via optional parameter args: opt.newton(...., args= [cashflow])
- Additional arguments are not altered by opt.newton()

g08 demo.py