E: Value of information (VOI) analysis

Uncertainty analysis application:

 Determining the value of information Measure by willingness to pay (WTP) for it

Approach:

- Similar to previous analysis but use **X** as the price of information
- Solve for **maximum X** where it's worth buying information

Example:

Upgrading an emergency communications system

- Cost: \$150 M
- Benefits are uncertain:

State	Probability	Benefit
Works well, high payoff (H)	90%	\$250M
Works poorly, low payoff (L)	10%	\$60M

• Could hire consultant to determine state

Decision Tree:

Initial node: consultant, upgrade, or nothing

Simplifying the right nodes:

Simplifying again:

 $EV = -\pi + 90$ EV = 0.9*(-X+100) + 0.1*(-X) EV = -X + 90

Buy information when:

$$-X + 90M \ge 81M$$

 $X \leq 9M$

Conclusion:

• Maximum WTP for information is \$9M

Exercise on GC