al40

C: Grouping and aggregating data with Pandas

Computing statistics for groups within a dataset

Done in two distinct steps:

1. Grouping
Collect records into groups

e Purely organizational
2. Aggregating
Compute group values from member data

e Applies a given calculation to each group
e Collapses the data: one value per group rather than per member

Implementation in Pandas:
1. Grouping: build grouped data using .groupby() method.

2. Aggregating: apply aggregation functions to the grouped data.

Example:

Step O: Initial data

raw, index = id:

Topics Page 1

id typeinc age
1 A 50 32
2 B 80 40
3 B 30 20
4 A 70 27
5 B 88 50

Step 1: grouping

grouped = raw.groupby('type')

Returns a GroupBy object that organizes rows into groups:

type A:

id typeinc age
1 A 50 32

A 70 (27
type B:
id typeinc age
B 80 40
B 30 20
B 88 50

Step 2: aggregating

Applying one or more functions to the GroupBy object

Topics Page 2

Examples: applying functions to individual variables

mean_inc = grouped['inc'].mean()

type inc
A 60
B |66

e Index will always be the grouping variable(s) from .groupby()

med_age = grouped['age'].median()

type age
A 29.5
B 40

What aggregation functions can be applied to a GroupBy object?

1. Series methods that return a scalar; some common examples:

Method Description

.sum()

.quantile(0.25) Value at the 25th percentile

.count() Count of non-missing values in a group

.mean() and .median()

.min() and .max()
.std() and .var()

Topics Page 3

e Return one record per group
e Analogous to collapse in Stata

2. Descriptive methods; some common examples:

.size() Number of items in the group
.describe() Descriptive statistics

e Return one record per group

Aside: .size() vs .count():
.size() total number of records
.count() records with non-missing data for a given variable

3. Methods that return subsets of each group; handy examples:

.head(N) First N rows of each group
.tail(N) Last N rows of each group
.nlargest(N) N rows with the largest value of given column

e Return several records per group

4. Methods that produce information about the ungrouped data; examples:

.ngroup() Each original row's group number
.cumcount() Original row's sequence number within its group

.cumsum() Cumulative sum within each group

Topics Page 4

.rank() Rank of each row within its group

Return one row for each row in the ungrouped data
Can be saved back into the original DataFrame

5. Many, many others, especially via the .agg() method:

.agg() is a Swiss Army Knife:

e Can apply a wide range of functions (including user-written)

e Can apply multiple functions at once
e Can apply different functions to different columns

Aggregation examples:
e Applying one function to all variables in a DataFrame:
means = grouped.mean()
Function applied to every column:
type inc age

A 60.0 29.500000
B 66.036.666667

e Applying multiple functions to one variable:

details = grouped]['inc'].agg(['min’, 'max'])

Topics Page 5

type min max
A 50 70
B 30 88

Note: the argument is a list and the function names can be strings

e Applying different functions to different variables:
details = grouped.agg({'inc':'max’, 'age':'mean'})

type inc age
A 70 29.500000
B |88 36.666667

Note: the argument is a dictionary with columns as keys

e Applying a descriptive function to one variable:
details = grouped|['inc'].describe()
Generate multiple statistics per variable:

type count mean std min 25% 50% 75% max
A 2.0 /60.0 14.142136 50.0 55.0 60.0 |65.0 70.0
B 3.0 66.0 31.432467 30.0 55.0 80.0 [84.0 88.0

e Many other combinations are possible

Topics Page 6

Continue in g11 demo.py

Topics Page 7

