E: Policy uncertainty in depth, part 2

Key results from part 1:

P = \$30/MWh Q = 1752 MWh per year r = 10%

	No FIT in effect	Permanent FIT with S=70
PV of revenue:	$V^{NF} = PQ\left(\frac{1+r}{r}\right)$	$V^{PF} = (P+S)Q\left(\frac{1+r}{r}\right)$
Evaluating:	$V^{NF} = 578,160$	$V^{PF} = 1,927,200$
PV of cost:	$PV_{cost} = 1.5M$	$PV_{cost} = 1.5M$
NPV:	NPV = -921,840	NPV = +427,200

Now suppose investors know FIT could be repealed:

- If FIT is in effect at time t, probability of repeal before t + 1 is ρ
- Repeal is permanent: no chance FIT will be reinstated

Time line:

 Rev_t = revenue at t, known

 $Rev_{t+1} =$ revenue at t + 1, uncertain

```
Rev_{t+2} = revenue at t + 2, uncertain Rev_{t+3} = ...
```

```
Key question:
What's V_t, the expected PV of the revenue stream from t on?
```

Handy to treat V_t , the value of turbine at t, as sum of two components:

- 1. Revenue at *t* (current income)
- 2. PV of owning the turbine at t + 1 (asset value of future income)

$$V_t = Rev_t + \frac{V_{t+1}}{1+r}$$

 Rev_t is known at t

 V_{t+1} is uncertain:

• Case 1: if FIT repealed, year t + 1's view:

Revenue = **PQ** every year from t + 1 on:

$$V_{t+1} = V^{NF}$$

• Case 2: If FIT NOT repealed, year t + 1's view:

$$V_{t+1} = V_{t+1}^{FIT}$$

- Superscript indicates FIT still in place at t + 1
- Value to be determined ...

Constructing the tree at **year** *t*:

State at $t + 1$	Probability	
Not repealed (NR)	$1 - \rho$	
Repeal (R)	ρ	

 $V_t^{FIT} =$ expected PV as of t

$$V_t^{FIT} = (1 - \rho) \left((P + S)Q + \frac{V_{t+1}^{FIT}}{1 + r} \right) + \rho \left((P + S)Q + \frac{V^{NF}}{1 + r} \right)$$

$$V_t^{FIT} = \frac{(P+S)Q}{(P+S)Q} + (1-\rho)\left(\frac{V_{t+1}^{FIT}}{1+r}\right) + \rho\left(\frac{V_{t+1}^{FIT}}{1+r}\right)$$

 $V_t^{FIT} =$ current revenue + expected PV of asset value

Use two observations to simplify:

- 1. If FIT is **not** repealed, t + 1 looks just like t:
 - Receive $(P + S)^*Q$ in current period (0)
 - Uncertain *Rev* in all future periods (1,2,...)

Thus, period t + 1's value (in t + 1) would look like t's:

 $V_{t+1}^{FIT} = V_t^{FIT}$

Formally, the problem is recursive

2. If FIT is repealed, know V^{NF} from earlier:

$$V^{NF} = PQ\left(\frac{1+r}{r}\right)$$

Applying the two observations:

$$V_t^{FIT} = (P+S)Q + (1-\rho)\left(\frac{V_t^{FIT}}{1+r}\right) + \rho\left(\frac{PQ\left(\frac{1+r}{r}\right)}{1+r}\right)$$

Simplifying:

$$V_t^{FIT} = (P+S)Q + (1-\rho)\left(\frac{V_t^{FIT}}{1+r}\right) + \rho\left(\frac{PQ}{r}\right)$$
$$V_t^{FIT} = PQ + SQ + \left(\frac{1-\rho}{1+r}\right)V_t^{FIT} + \frac{\rho}{r}PQ$$

Topics Page 4

$$V_t^{FIT} \left(\frac{r+\rho}{1+r} \right) = PQ \left(\frac{r+\rho}{r} \right) + SQ$$
$$V_t^{FIT} = PQ \left(\frac{1+r}{r} \right) + SQ \left(\frac{1+r}{r+\rho} \right)$$

Result is surprisingly compact:

$$V_t^{FIT} = V^{NF} + SQ\left(\frac{1+r}{r+\rho}\right)$$

Key question: how does it vary with ρ ?

$$V^{NF} = 578,160$$

 $S = 70$
 $Q = 1752$
 $r = 0.1$

$$V_t^{FIT} = 578,160 + 70*1752 \left(\frac{1.1}{0.1 + \rho}\right)$$

Extreme cases:

ρ	V_t^{FIT}	Description	NPV	Build?
0	1,927,200	Permanent subsidy	+427,200	yes
1	700,800	One year of subsidy	-799,200	no

Between the two?

$$V_t^{FIT}$$
 drops **fast** as ρ rises even a **little**:

$$\rho = 0.15$$

 $V_t^{FIT} = 1,117,776$
 $NPV = -382,224$

A 15% chance of repeal is more than enough to kill the project

Graphing V_t as a function of ρ :

Fatal risk of repeal: $\rho = 4.6\%$