
a372

Methods for cleaning up strings1.

Making case consistent for subsequent joins:a.

data['clean'] = data['raw'].str.lower()

Making spacing consistent:b.

raw_parts = data['raw'].str.split()
data['clean'] = raw_parts.apply(' '.join)

Applies a function to the values of a Series•
Can apply most functions that take a single argument•

Example:

Raw:
Index raw
0 'some words here '
1 'other words there'

After split:
Index
0 ['some','words','here']
1 ['other','words','there']

After join:
Index clean

C: Data cleaning techniques

 Topics Page 1

Index clean
0 'some words here'
1 'other words there'

Removing characters via regular expressions (REs)c.

Discussed earlier in the semester•

Very powerful pattern-matching tools for manipulating text.•

For reference, repeating some frequently used single-character REs:•

RE What it matches
\s Any whitespace character: space, tab, newline, return, etc.
\S Any character that is NOT whitespace
\d Any digit: 0-9
\D Any character that is NOT a digit
\w Any word character: letters, digits, underscore
\W Any character that is NOT a word character
. Any character except a newline
^ Just before the first character of the string
$ Just after the last character of the string

Combining to match a sequence of characters:•

RE What it matches
\d\d Any two digits
\w\w\w Any three word characters
\w\S A word character followed by any non-whitespace character
\A\w A word character at the beginning of the string

 Topics Page 2

Matching sequences of varying length:•

RE What it matches
\d+ One or more digits
\w+ One or more word characters
\s+ One or more whitespace characters

Combining with a vertical bar to match one or the other:•

RE What it matches
\d|\s A digit or a space
a|\d Letter 'a' or a digit

Prefix RE string with r to avoid excess \'s•

new = old.str.replace(r'\D', '', regex=True)

Would remove any non-digit from the string.

Combining two series using where()2.

Builds a new series based on an element-by-element Boolean test

new_series = old_series.where(test_condition, alt_value)

For elements where test_condition is True:
new_series ⬅ old_series

For elements where test_condition is False:
new_series ⬅ alt_value

 Topics Page 3

Example:

new_series = old_series.where(old_series >= 0 , None)

old_series new_series

Index
0 -1
1 2
2 3
3 -5
4 0

Index
0 NaN
1 2
2 3
3 NaN
4 0

Filling missing data using fillna()3.

Basic usage: replaces missing data with the argument it was given

Example:

filled = original.fillna(0)

Can also fill using data in other ways using the method keyword:

method='ffill': Carry previous non-missing value forward
method='bfill': Carry next non-missing value backward

 Topics Page 4

