Spatial Joins

(1)

Fundamentals

- A spatial join merges attributes by location
- 1. Combines attributes in two layers:
 - **Base** layer \rightarrow left dataset One individual shape: L_i
 - Join layer \rightarrow right dataset One individual shape: R_i
- 2. Joining records is based their geometry (location):
 - Rule for whether L_i and R_j match is "geometric predicate"
- 3. Often done as a **left join**:
 - All L records kept
 - *R* records that don't match any L's are discarded
 - Resulting attributes for L records: L's plus R's

Fundamentals, continued

- 4. Two possible match types
 - 1:1 one to one
 - If **any** R_j matches $L_i \rightarrow$ **first** matching R_j 's attributes are added to L_i
 - If **no** R_j matches $L_i \rightarrow L_i$ gets **NULLs** for R's attributes
 - Record count will match input
 - 1:m one to many
 - For every R_i that matches an $L_i \rightarrow$ duplicate L_i and then add R_i 's attributes to it
 - If **no** R_i matches $L_i \rightarrow L_i$ gets **NULLs** for R's attributes
 - Record count may be larger than input

One-to-one example

L2 and R1 match

L3: no match in R R2, R4: no matches in L

Results

Output layer

Feature	а	b	С	d	е
L1	100	110	120	630	640
L2	200	210	220	430	440
L3	300	310	320	NULL	NULL

Starting a spatial join in QGIS ...

Next dialog box ...

Geometric predicates determine what matches

Predicate	L and R match if:		
Intersects	L and R have any points in common (i.e., if any of the conditions below are true)		
Overlaps	L and R share some interior points and have same dimension (polygon vs polygon)		
Contains	L contains R (R is inside L)		
Within	L is within R (L is inside R)		
Equals	L and R are the same		
Crosses	L and R share some points but have different dimensions (line vs polygon)		
Touches	L and R share some boundary points but no interior points		

L and R overlap:

L contains R:

L is within R:

L equals R:

L and R touch:

Examples: CNY zip codes, Onondaga County, and I-90

Base layer (L): zips Join layer (R): county **or** I-90

Intersects

ALL zips are retained in the new layer in all examples. Color coding shows those that match and gain R attributes

The county and I-90 each share points with some zips.

Overlaps

The county overlaps some zips; I-90 does not since it's a line.

PAI 789 Advanced Policy Analysis

Contains

No zip (L) contains the whole county or I-90 (R).

Within

Some zips (L) are within the county (R); no zips are within I-90.

Equals

Neither the county nor I-90 are identical to any zips.

Crosses

No zips and the county cross since both are polygons; I-90 crosses some zips.

PAI 789 Advanced Policy Analysis

Touches

One zip shares only a boundary with the county; no zips share a boundary with I-90.

Adding complexity: zips and multiple counties

- Base layer (L): zips
- Join layer (R): counties
- Focus on three example zips:
 - 13147, in Cayuga only
 - 13108, in Onondaga only
 - 13080, in both

Join predicate: intersect

- Join type:
 - Left
 - One-to-many
 - May have multiple counties per zip
- Outputs **four** records:
 - 13147 fields + Cayuga fields
 - 13108 fields + Onondaga fields
 - 13080 fields + Cayuga fields
 - 13080 fields + Onondaga fields

Join predicate: overlap

- Join type:
 - Left
 - One-to-many
 - May have multiple counties per zip
- Outputs **four** records:
 - **13147** + **NULL** (within, not overlapping)
 - **13108** + **NULL** (within, not overlapping)
 - 13080 + Cayuga
 - 13080 + Onondaga

PAI 789 Advanced Policy Analysis

Join predicate: within

- Join type:
 - Left
 - One-to-one **OR** one-to-many
- Outputs three records:
 - 13147 + Cayuga
 - 13108 + Onondaga
 - 13080 + NULL (not within either)

\triangle Intersection in geoprocessing is different \triangle

Alters geometry by slicing shapes (overlay in geopandas)

Q Intersection	:	×
Parameters Log	Intersection	٦
Input layer	This	
🖙 erie 500m buffers [EPSG:6347] 🔹 🖒 🛶	overla Input Input	
Selected features only	Featu ection	
Overlay layer	the open north	
🖙 erie 500m buffers [EPSG:6347]	Overlay .	
Selected features only		
Input fields to keep (leave empty to keep all fields) [optional]		
0 options selected		
Overlay fields to keep (leave empty to keep all fields) [optional]		
0 options selected		
▼ Advanced Parameters		
Overlay fields prefix [optional]		
Intersection		
✓ Open output file after running algorithm		
0%	Cancel	
Run as Batch Process	Run Close Help	

Creates 4 non-overlapping features

- Splits geometry of features
- Intersection of **zips** and **counties**:
 - 4 output features that do not overlap
 - Each get matching L and R attributes
- Key issue to remember:
 - Attributes **ARE NOT** split
 - Example: each 13080 record would have the full population of the zip
- Also:
 - Partial polygons won't look like full zip

