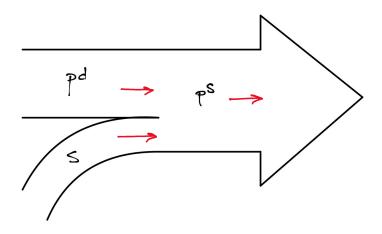
Government or other entity pays for part of a transaction:

Buyer pays: P^d

Government pays: S

New flow of money:



$$P^d + S = P^s$$

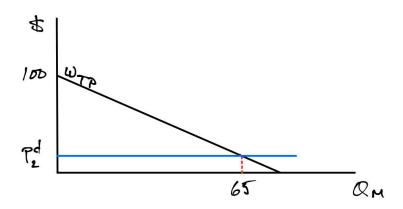
No change in the decision rules:

$$WTP = P^d$$

$$WTA = P^s$$

Designing a subsidy for the example model:

Step 1: find P_2^d needed for demand to hit target Q_M^e

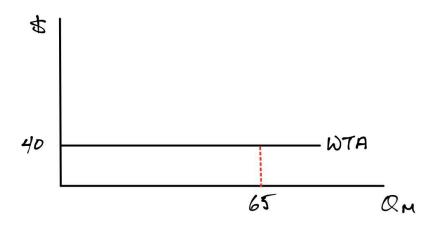


$$100 - Q_M^D = P_2^d$$

$$100 - 65 = P_2^d$$

$$P_2^d = 35$$

Step 2: find P_2^s needed to induce supply



$$WTA(65) = P_2^s$$
 Plug target Q into WTA $$40 = P_2^s$

Step 3: use the accounting rule to find S

$$P_2^d + S = P_2^s$$

\$35 + S = \$40
 S = \$5

Efficient subsidy and MB_e :

In general, S will *always* be equal to MB_e at efficient Q_M^e

For efficiency want:

$$MSB = WTA$$

$$WTP + MB_e = WTA$$

Effect of subsidy *S*:

Accounting: $P^d + S = P^s$

Buyer rule: $WTP = P^d$

Seller rule: $WTA = P^s$

Substituting into the accounting rule:

$$WTP + S = WTA$$

Now solve for the *S* to get to efficiency:

Goal: $WTP + MB_e = WTA$

Accounting: WTP + S = WTA

$$WTP + S = WTP + MB_{\rho}$$

$$S = MB_e$$

The subsidy should be set equal to the externality.

When MB_e is not be constant the rule applies at the efficient Q:

$$S = MB_e(Q_M^e)$$

Daily exercise