Present Value of a Lottery Ticket
Notes on Solution
1 Ten equal installments
Brute force calculation, assuming that the first payment arrives this year.

int	5%	
year	pmt	pv
0	100	100
1	100	95.2
2	100	90.7
3	100	86.4
4	100	82.3
5	100	78.4
6	100	74.6
7	100	71.1
8	100	67.7
9	100	64.5
		810.8

Alternative approach: PV is year 0 payment plus the value of an infinite stream minus the value of losing an infinite stream after year 9:

```
year 0 100
infinite 2000
after 9 -1289
total 810.8
```

2 PV of 50,000 a year forever?
If the payments start in one year, the value would be $50,000 / 0.05$ which is equal to $1,000,000$.

That's clearly better than the deal in part 1. If the payments start right away, it would be even better: $\$ 1,050,000$.

3 PV of 30 years worth of payments
assume that payments begin right away (year 0) and end after year 29 (the 30th payment)
each payment 50,000

pv at 0 of an infinite stream starting in year 1 1,000,000
pv of year 0 payment
50,000
pv at 0 of stream from 30 onward 242,946
pv of pmts from 0 to 29
807,054
The first alternative, $\$ 100,000$ a year for 10 years, is slightly better than receiving $\$ 50,000$ a year for 30 years.

