## E: Imperfect information, part 2

Continuing the analysis:

Tree constructed so far:



Can help to redraw tree from buyer's perspective:

Connect test directly to information sets

Also, only three key payoffs down test branch:

| Test,               | buy car, | <mark>car is G</mark> : | -100 | - 2500 | + 4000 | = 1400  |
|---------------------|----------|-------------------------|------|--------|--------|---------|
| <mark>Test</mark> , | buy car, | car is B:               | -100 | - 2500 | + 1000 | = -1600 |
| Test,               | don't bu | y car                   | -100 |        |        | = -100  |



Red boxes: probabilities to be determined

Step 1: unconditional probabilities of individual information set endpoints:



Checking the sum: 0.3 + 0 + 0.14 + 0.56 = 1

Step 2: probabilities of information sets rG, rB:

probability of rG: 0.3 + 0.14 = 0.44probability of rB: 0 + 0.56 = 0.56

Checking the sum: 0.44 + 0.56 = 1

Adding to the tree:



Step 3: calculate conditional probabilities after rG and rB:

Conditional probability: Probability of **true state** given **reported state** 

Example:

Probability car is actually **good** (G) when **reported good** (rG) Formally, an application of Bayes' Rule

Equal to the share of G cars in those with rG reports

Find from original tree:



Adding to the buyer's view:



Step 4: evaluate finished tree:

Computing EVs at right:

Updating the tree:



Evaluating right-most choice nodes:



Evaluating again gives the EV of the test:

EV = 0.44\*440 + 0.56\*(-100) = 137.6



Conclusion:

Buy the test