
a195

REs are a very powerful pattern-matching tools for manipulating text.

Essentially a greatly enhanced form of "wild card" characters

Some frequently used single-character REs:

RE What it matches
\s Any whitespace character: space, tab, newline, return, etc.
\S Any character that is NOT whitespace
\d Any digit: 0-9
\D Any character that is NOT a digit
\w Any word character: letters, digits, underscore
\W Any character that is NOT a word character
. Any character except a newline
^ Just before the first character of the string
$ Just after the last character of the string

Can be combined to match a sequence of characters:

RE What it matches
\d\d Any two digits
\w\w\w Any three word characters
\w\S A word character followed by any non-whitespace character
^\w A word character at the beginning of the string

Can match sequences of varying length:

RE What it matches
\d+ One or more digits

C: Regular expressions (RE)

 Topics Page 1

\d+ One or more digits
\w+ One or more word characters
\s+ One or more whitespace characters

Characters without a backslash match themselves:

RE What it matches
a\d Letter 'a' followed by any digit: a0 … a9

Can be combined with a vertical bar to match either left OR right RE:

RE What it matches
\d|\s A digit or a space
a|\d Letter 'a' or a digit

In code, REs usually written in strings prefixed with r to avoid excess \'s

new = old.str.replace(r'\D', '', regex=True)

Would remove any non-digit from the string
Changes them to empty strings (no characters)

This just scratches the surface:

REs can be used for very complex pattern matching and substitution

More in g13 demo shortly

 Topics Page 2

