
A192

Two conceptual modes for filtering data:

Selecting:1. choose rows to keep → drop everything else
Dropping:2. choose rows to drop → keep everything else

Methods for selecting:

Select by index using .loc[]:•

onondaga_row = means.loc['Onondaga']

Result: single record with 'Onondaga' as its index value

Select a cross section from a dataframe with a multilevel index:•

something = med_b.xs(3, level='type')

Result: all records with 3 as their value of the 'type' index

Select by position using .iloc[] or list subscripting:•

top_five = high_to_low.iloc[0:5]

top_five = high_to_low[:5]

Result: first five records regardless of their index values

C: Selecting and dropping rows

 Topics Page 1

Select via a boolean (True/False) series:•

is_res = usable['PROP_CLASS'].between(200,299)
res = usable[is_res]

Result: records where 'PROP_CLASS' is between 200 and 299 inclusive

Variant: combining boolean and selection into one line

res = raw[raw['YR_BLT'] >= 1980]

Result: records where raw['YR_BLT'] is at least 1980

Selecting via a query:

trim = raw.query("state == '36' and fuel == 'gas'")

Result: records where 'state' is '36' and 'fuel' is 'gas'

Advantages: flexible, compact and clear

Note 1:⚠Argument is a string
Note 2:⚠Column names are not quoted
Note 3: Use backticks for names with spaces: `Cap MW`

•

Methods for dropping rows:

Dropping records with missing data:•

 Topics Page 2

usable = raw.dropna(subset=key_vars)

Result:
Removes records with missing data in key_vars
Without the subset, removes records with any missing data

Dropping duplicates:•

weather = weather.drop_duplicates(subset='Local Hour')

Result:
Step 1: find records with duplicate values of 'Local Hour'
Step 2: drop all duplicates except the first one
Keep all records that aren't duplicates

Dropping records by name:•

trim = raw.drop(index=name_list)

Result:
Removes records having index values in name_list

 Topics Page 3

