Solution: Risk averse VC

Initial data

Project:

State	Probability
Failure (F)	80%
Success (S)	20%

Contract:

• Fixed payment to Founder: \$30,000

• Payments from Founder:

State	Payment
F	\$0
S	\$300,000

VC's decision tree:

Evaluation:

- a. EV = 0.8*(\$170,000) + 0.2*(\$470,000) = \$230,000
- b. EU = 0.8*(15,288) + 0.2*(34,488) = 19,128
- c. EU > 17,411 so the VC would offer the contract

d.
$$CE = (EU)^{\frac{1}{0.8}} = EU^{1.25} = $224,956$$

Net gain to VC = \$225k - \$200k = \$25k

e. Risk premium = EV - CE = \$230,000 - \$224,956 = \$5,044

Carrying the analysis further to calculate overall gains:

Gain from contract:	\$34k
VC:	\$25k
Founder:	\$9k

Remaining risk premium: \$5kTotal potential gains:\$39k

Key results:

- Gains from risk sharing **do not** require risk neutral agents
- However, won't capture all of the potential gains