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E. NUMERICAL METHODS

This appendix describes three unusual numerical techniques that were of central impor-

m

tance to the model. The first, Broyden’s Method is a modification to Newton’s Method that is

uch faster for problems in which computing the jacobian of the residual functions is difficult

l

e

or costly. The second method is generalization of the Fair-Taylor approach for solving rationa

xpectations models. Its design allows it to take advantage of a common feature of such

.

T

models to substantially reduce the computer time required to obtain a perfect foresight solution

he final section describes a method of adjusting input-output tables to obtain consistent row

-

t

and column sums. It is originally due to Kuroda, and has significant advantages over the tradi

ional RAS method.

E.1. Broyden’s Modification to Newton’s Method

n

e

Broyden (1965, 1973) has developed a procedure that can reduce the number of functio

valuations required to solve a system of equations using Newton’s method. This section

describes how the method works.

Newton’s method is an iterative procedure used to find a vector x that satisfies an equa-

r

tion f(x)=0, where f is a vector valued function. Roughly speaking, a guess of x is refined

epeatedly until the each element of f is approximately zero. The fundamental relationship

f

a

used to improve the guess of x can be derived from a first-order Taylor series expansion of

bout a trial solution vector x. Suppose that the value of x at iteration k is x , and that evaluat-k

ki k k k kng f at x gives f . If the Jacobian of f at x is J , the Newton adjustment s and the new

trial solution x are given by the equations below:k +1

k k
−1

ks = −J f (E.1)

)x = x + s (E.2k +1 k k
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n practice, Newton’s method is usually implemented as follows. Given a trial solution

yx , the value of f is computed. If f is not sufficiently close to zero (usually determined bk k k

k k k k k s

t

computing f ′f ), J is formed by perturbing each of the n elements of x in succession. J i

hen used to determine s using equation (1), and the new trial solution, x , is found fromk k +1

k n

t

equation (2). For each iteration f must be evaluated n +1 times – once to obtain f and

imes to produce J .k

k +1 k +1 k t

a

Broyden’s modification is a particular way of using f to form J from J withou

dditional function evaluations. At each iteration the Jacobian will be less accurate than under

,

t

the conventional algorithm so more iterations are usually required for convergence. Even so

he computational gain may still be substantial since the number of function evaluations per

iteration is reduced from n +1 to 1.

The Jacobian updating procedure works as follows. Let y =f −f . Since y / e s e is

k k

k k +1 k k k

-

b

the directional derivative of f in the direction given by s , y can be used to revise the Jaco

ian. It does not, however, determine a unique adjustment to J , so Broyden imposes the

k

k

o

s

additional conditions that the directional derivatives implied by J in directions orthogonal t

be preserved in J . This produces the updating rule given below:k k +1

k +1 k k k k
k k

J k= J + (y −J s )
s ′s
s ′hhhhh (E.3)

What is really needed for Newton’s method, however, is J . Broyden has also derivedk
−1

s

w

an updating formula which operates directly on the inverse, eliminating numerical difficultie

hich would arise from constantly inverting J. This update is given below:

)hhhhhhhh (E.4
Js ′

y
J = J + (s −J y )

s ′Jk +1
−1

k
−1

k k
−1

k
k k

−1
k

k k
−1
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or the updating method to work, an initial value of J is required. In most cases, this

rmust be constructed by the usual method of perturbing x n times. When a number of simila1

a

g

problems are to be solved, however, the final Jacobian from the previous problem is often

ood approximation to the true Jacobian for the next problem. In this case, using the old Jaco-

-

l

bian as an initial guess eliminates the n function evaluations at the beginning of the new prob

em. This can result in a substantial increase in the speed of the algorithm.

r

p

Broyden’s method is only one of a number of updating procedures available; some othe

rocedures are discussed in Press, et al. (1986). The use of any updating procedure could

n

o

result in substantial savings, particularly when combined with reuse of previous Jacobians. I

ne application the number of function calls was reduced by 37% when updating alone was

t

used; adding strategic reuse of old Jacobians brought the number of function evaluations down

o 26% of the original number.

mE.2. A Hybrid Intertemporal Algorith

This algorithm is a generalization of the method due to Fair and Taylor (1983), and

e

v

exploits the fact that most economic models contain an accumulation equation relating stat

ariables in adjacent periods. It is substantially faster than the ordinary Fair-Taylor algorithm,

c

while providing equally accurate results. The method is termed "hybrid" because it employs

ertain features of multiple shooting (see Lipton, et al., 1982) obtain these improvements in

s

o

performance. In a sense, multiple shooting and the Fair-Taylor approach are at different end

f a single spectrum. Shooting uses relatively few intermediate points, but employs a great

a

deal of information about the problem’s dynamic features. Fair-Taylor, on the other hand, uses

large number of points and almost no dynamic information. The method described here lies

h
in between because it uses many points, but also a certain amount of dynamic data.
hhhhhhhhhhhhhhh

1. In principle, any matrix could be used as an initial jacobian. However, convergence will usually be slower if
it isn’t reasonably close to the truth.
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Given a vector valued function A that generates a set of actual values from a vector of

expectations E, the problem is to find a vector E which solves the equation:

E = A(E) (E.5)

tThe Fair-Taylor algorithm proceeds by computing A(E ) for a trial solution E . If A is nok k k

s kufficiently close to E , a new trial vector is determined as shown:

)E = γA + (1−γ)E (E.6k +1 k k

w k khere A = A(E ), and γ is a parameter used to ensure stability. An important feature of this

e

approach is that the revision of a particular element of E depends only on the corresponding

lements of A and E – no information about adjacent elements is used. In many economick k

i i +1problems, however, E and E are related by an accumulation equation. Furthermore, steady

-

r

state values of E are usually known. Together, these features mean that extending the algo

ithm to employ information about adjacent periods could lead to a substantial improvement in

convergence speed.

An alternative technique can be developed by replacing A with a first-order Taylor series

expansion as shown:

A(E ) ∼∼ A(E ) + J (E −E ) (E.7)

k

k +1 k k k +1 k

+1Taking E to be a solution, the left hand side can be replaced to give the following:

)E = A + J (E −E ) (E.8k +1 k k k +1 k
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:Collecting unknown terms on the left yields the equation below

(I−J )E = A − J E (E.9)

F k

k k +1 k k k

or convenience define vector ΦΦ and rewrite the equation as shown below:

)ΦΦ = A − J E (E.10k k k k

k k +1 k(I−J )E = ΦΦ (E.11)

r

c

Writing out a small problem in scalar form (where the subscript k on J has been eliminated fo

larity):

R
J
J
J
Q −J

−J

1−J

−J

1−J

−J

1−J

−J

−J H
J
J
J
P

R
J
J
J
Q E

E

E H
J
J
J
P

=

R
J
J
J
Q Φ

Φ

Φ H
J
J
J
P

(E.12)

k
1

2
k

3

1

k

1k +
2

1k +
3

1

13

k +

32

3

12

3

22

2

11

3

12

1

I k

3

n practice the true array I−J will not be available, and a numerical approximation will have

-

t

to be used. Often the problem can be set up so that the actuals in period i depend on expecta

ions no farther in the future than period i +1. In the example above, this means that J will13

h

r

be zero. Further simplification can be achieved by setting the derivatives of the actuals wit

espect to past expectations to zero. (Note that unlike the previous tactic this is an approxima-

a

tion, since these terms will usually be small but nonzero.) One final approximation is to

ssume that the remaining partials are the same across periods. This produces the system

below:
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Q
J
J
J
R

0

0

1−J

0

1−J

−J

1−J

−J

0 H
J
J
J
P

R
J
J
J
Q E

E

E H
J
J
J
P

=

R
J
J
J
Q Φ

Φ

Φ H
J
J
J
P

(E.13)

k
1

2
k

3

1

k

1k +
2

1k +
3

1

12

k +1

12

1

1

11

1

:Finally, expanding the right hand side gives

R
J
J
J
Q 0

0

1−J

0

1−J

−J

1−J

−J

0 H
J
J
J
P

R
J
J
J
Q E

E

E H
J
J
J
P

=

R
J
J
J
Q A

A

A H
J
J
J
P

−

R
J
J
J
Q 0

0

J

0

J

J

J

J

0 H
J
J
J
P

R
J
J
J
Q E

E

E H
J
J
J
P

(E.14)

k
1

2
k

3

12

k1

12

1

1

1

3

2

1 11

1

1k +
2

1k +
3

1

12

k +1

12

1

1

11

1

11 12 e

i

The Fair-Taylor method is equivalent to setting J and J to zero. The algorithm can b

mproved if values of these partials are available, even if they must be found numerically. If

fi

the steady state value of E is known, the equation for the last actual can be dropped and the

nal element of E set directly to the steady state. This helps determine earlier values of E ,

since the periods are linked by the J terms in the I−J matrix.12

For a model which has one foresight variable, the above system of equations can be

i

solved easily by backward substitution; it is not necessary to use gaussian elimination or matrix

nversion. The new expectation for the last period of the problem above can be found as

shown:

E =
1−J
h 1hhhhh I

L A − J E M
O (E.15)3

11
3 11 k

3
1k +

:Earlier periods are found by repeated application of the equation

E =
1−J
h 1hhhhh I

L A − J E − J E + J E M
O (E.16)i +1

1
i

11
i 11 k

i
12 k

i +1
12 k +1k +
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e

i

For two or more variables, the method is slightly more complicated because it requires th

nverse of matrix (I−J ). A typical revised expectation is calculated as shown:11

k +1
i

11
−1

i 11 k
i

12 k
i +1

12 k +1
i +1 )

S

E = (I−J ) I
L A − J E − J E + J E M

O (E.17

ince J is assumed to be constant over periods, it is only necessary to compute (I−J ) 1

o

11 11
−

nce for each iteration of the algorithm.

E.3. Kuroda’s Method for Constructing Consistent Input-Output Data Sets

t

d

This section describes the method used to resolve inconsistencies between input-outpu

ata from various sources. The approach used was originally proposed by Kuroda (1988), and

is superior to the RAS method of Stone in several respects.

In input-output analysis it is often necessary to use inconsistent data sets originating from

y

o

different government agencies. For example, the table of interindustry transactions created b

ne agency may not be consistent with value-added and final demand vectors produced else-

t

a

where. In this case, the investigator will be confronted with three pieces of data which do no

gree: a table of interindustry transactions, a vector of commodity outputs, and a vector of

c

gross outputs by industry. The task then becomes adjusting the transactions table to match the

ommodity and industry output vectors.

In the past, this problem has been solved by using the RAS method. RAS is an iterative

u

algorithm which scales the rows and columns of the transactions table up and down repeatedly

ntil the table’s row and column sums agree with the target vectors. It has been shown that

s

RAS will eventually converge, but the result will not necessarily be close in any economic

ense to the original transactions table. The purpose of this paper is to define a measure of

lhow far a new transactions table is from the original, and to derive an algorithm which wil
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construct a table minimizing that distance.

Given an n ×m matrix X of initial data, define r and c to be the shares of each ele-o
ij ij

:ment in the row and column sums of the original matrix

r =
X

h Xhhhhh , c =
X

h Xhhhhh (E.18)
o
ji

o
j

n

i
1

o

ij

i =

ji

o
j

m

i
1

ij

j =
Σ Σ

g

f

Let R be a vector of target row totals, and C a vector of desired column totals. The followin

unction can then be used to measure the distance between a revised matrix X and the original

(embodied in r and c ), where w and v are arbitrary sets of weights:

Q =
2
1hh

I
J
L R
hXhhh−r

M
J
O

w +
2
1hh

I
J
L C
hXhhh−c

M
J
O

v (E.19)ij
ij

2

ij
j

m

1

n

j =1

ij
ij

2

ij
i =i

m

1

n

j =1i =
Σ Σ Σ Σ

:It is now possible to choose X to minimize this function subject to the following constraints

R = X (E.20)
m

ij
1

i
j =
Σ

Σj
i =1

n

ijC = X (E.21)

The Lagrangian for this problem is:

L =
2
1hh

I
J
L R
hXhhh−r

M
J
O

w +
2
1hh

I
J
L C
hXhhh−c

M
J
O

v j
ij

ij

2

i
j

m

1

n

j =1

ij
ij

2

ij
i =i

m

1

n

j =1i =
Σ Σ Σ Σ

Σ Σ Σ Σ
i =1

n

i i
j =1

m

ij
j =1

m

j j
i =1

n

ij )+ λ (R − X ) + µ (C − X ) (E.22
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Taking first order conditions gives:

∂X
∂Lhhhhh =

I
J
L R
hXhhh−r

M
J
O R
hwhhh +

I
J
L C
hXhhh−c

M
J
O C
hvhh − λ − µ = 0 (E.23)ij

i j
i

ij
ij

i

ij

i

ij
ij

i

i

ij

jCollect terms in X , and for convenience make the following definitions:

)hhhh
M
J
O

(E.24
vhhhh +
C

w

R
S =

I
J
L

ij
i
2

ij

j
2

ij
−1

ij
i

ij ij

j

ij ijG =
R

r whhhhhh +
C

c vhhhhh (E.25)

This allows the first order conditions to be rewritten as shown

X = S (λ + µ + G ) (E.26)

B

ij ij i j ij

oth S and G depend only on initial data and the weights w and v , so it is only necessary to

-determine λ and µ, to find the optimal X . These may be determined by applying the conij

straints:

R = X = S (λ + µ + G ) (E.27)
m

ij i j ij
1

m

ij
j =1

i
j =
Σ Σ

Σ Σj
i =1

n

ij
i =1

n

ij i j ij )C = X = S (λ + µ + G ) (E.28
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Define diagonal matricies S and S as indicated:R C

ii
R

j =1

m

ij jj
C

i =1

n

ijΣ ΣS = S , S = S (E.29)

In matrix notation, the constraints can now be expressed as

S .λ + S .µ = R − A (E.30)R

CS ′.λ + S .µ = C − B (E.31)

where A and B are vectors defined as follows:

A = S G B = S G (E.32)
n

ij ij
1

m

ij ij , i
i =1

i
j =
Σ Σ

-

t

With more manipulation, it is possible to derive explicit formulae for λ and µ. For computa

ional purposes, however, it is better to arrange the equations into the following system, which

can be solved easily by any competent numerical package:

R
J
Q S ′
S

S

S H
J
P

R
Q µ
λ H

P = R
Q C −B
R −A H

P (E.33)
R

C

ij .Armed with the values of λ and µ, the optimal choice of X can be computed directly

It is worthwhile to examine a few of the possible weighting schemes that can be used.

The most obvious approach is to weight all errors equally, which means that w =v =1 for allij ij



i
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and j . On the other hand, the following choice of weights results in a drastic simplification

of the revision formula:

w =
2
1hhR , v =

2
1hhC (E.34)

i

ij i
2

ij j
2

j ij :This means that S =1 for all i and j . Moreover, the following is true of G

G =
2
1hh(r R + c C ) (E.35)

w

ij ij i ij j

hich is simply the average of the values obtained by applying the original shares to the target

row and column sums. Furthermore, it can be shown that all of the following are true:

λ = 0, µ = 0, (E.36)
i
Σ Σ
=1

n

i
j =1

m

j

ij
R

ijS C= m , S = n. (E.37)

This means that the revision formula has a particularly simple form:

X = G +
m
1hhh(R − G ) +

n
1hh(C − G ) (E.38)

n

ij
1

m

ij j
i =1

ij ij i
j =
Σ Σ

T ij ijhus, the revised X is just G (which has the interpretation above) adjusted to correct the

-

m

row and column sums. It is important to note that this method does not guarantee that all ele

ents of X will be nonnegative.
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Kuroda proposes a different weighting scheme, with w and v determined by the follow-

ing equations:

w =
r

1hhh , v =
c

1hhh . (E.39)
2
j

2 ij
ij

T

ij
i

his choice of weights causes Q to be a function of the percentage changes in the coefficients:

)hhhhhh−1
M
J
O

(E.40
CX /

c
hh

I
J
L

1
2

hhhhhh−1
M
J
O

+
RX /

r
hh

I
J
L

1
2

Q =
i =1

n

j =1

m

ij

ij i
2

i =1

n

j =1

m

ij

ij j
2

I

Σ Σ Σ Σ

n most cases, this will ensure that all elements of X are positive, since making one negative

t

i

would require a change of more than one hundred percent, resulting in a large value of Q . I

s possible, however, for negative numbers to arise if the row and column targets differ sub-

stantially from the corresponding totals of the initial array.


